K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

địt mẹ mày

27 tháng 11 2018

Mời tham khảo link :

         https://goo.gl/BjYiDy

26 tháng 12 2017

https://goo.gl/BjYiDy

4 tháng 12 2016
Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh

b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân

c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
  
1 tháng 12 2016
  1. Bài 1
    a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
    và MN=1/2DC => MN= DE(2)
    từ (1)và (2) => MNED là hbh

    b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
    Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
    => tam giác ADM cân tại M => MDA = DAM
    => DEN= MAD (3)
    MN//DE=> MN//AE => AMNE là hình thang (4)
    từ (3)và (4) => AMNE là hình thang cân

    c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
    Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
     nhuquynhdat, 17 Tháng mười hai 2013#2 
  2. nhuquynhdat

    nhuquynhdatGuest

     

    bài 2

    a) AB//CD => AB//CE(1)
    Xét tam giác ADE có AH là đg` cao
    lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
    => tam giác ADE cân tại A
    => ADE=AED(goác đáy tam giác cân)
    mặt khác ABCD là hình thang cân => ADC=góc C
    => góc C= AED
    mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
    từ (1)và (2) => ABCE là hbh

    b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
    DH=HE(gt)
    AE//DF(gt)=> AEH=FDH(SLT)
    =>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF

    c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
    mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
    lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg

a: Xét tứ giác ABCH có

AB//CH

góc AHC=90 độ

Do đó: ABCH là hình thang vuông

b: Sửa đề; DH=CK

Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

AD=BC

góc D=góc C

Do đo: ΔAHD=ΔBKC

=>DH=CK

c: Xét ΔAED có

AH vừa là đường cao, vừa là trung tuyến

nên ΔAED cân tại A

=>góc AED=góc ADE=góc BCD

=>AE//BC

mà AB//CE

nên ABCE là hình bình hành

23 tháng 12 2020

bn tự vẽ hình nha

a,Ta có E đối xứng vs c qua d

-> D là trung điểm EC

Xét tứ giác EBCA có

DB=DA=1/2 AB( D là trung điểm BA-gt)

DE=DC=1/2EC( D là trung điểm EC-cmt)

mà EC cắt BA tại D

-> EBCA là hình bình hành( tứ giác có hai đg chéo cắt nhau tại trung điểm mỗi đg)

-> EB=AC và EB song song AC

b, Ta có HA=AC( H đối C qua A-gt)

mà EB=AC(Cmt), EB song song AC(cmt)

-> HA = EB; HA song song EB

Xét tứ giác EBAH có

HA=EB( cmt)

HA song song EB(cmt)

-> EBHA là hình bình hành( 1 cặp đối song song và bằng nhau)

Ta lại có ,góc BAC +góc BAH= 180 độ( kề bù)

           mà góc BAC=90 độ( tam giác ABC vuong tại A-gt)

         -> góc BAH= 90 độ

Ta có EBAH là hình bình hành(cmt)

mà góc BAH=90 độ(cmt)

-> EBAH là hcn( Hình bình hành có 1 góc vuông)

23 tháng 12 2020

Sorry bn nhe mình ko bít câu c. Nếu hai câu trên đúng like mình nhahihi

28 tháng 10 2021

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành