K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

B C A D O M N E F T U V

Kẻ MT // BD, T \(\in\)AD

Gọi giao điểm của MT và AC là U, giao điểm của NT và BD là V

Xét \(\Delta ABD\)có : MT // BD \(\Rightarrow\frac{AM}{AB}=\frac{AT}{AD}\)( Định lí Ta-lét )

Mà \(\frac{AM}{AB}=\frac{CN}{CD}\)( gt ) \(\Rightarrow\frac{AT}{AD}=\frac{CN}{CD}\)

Áp dụng định lí Ta-lét đảo trong \(\Delta ACD\)có \(\frac{CN}{CD}=\frac{AT}{AD}\)( cmt ) \(\Rightarrow\)NT // AC

Áp dụng định lí Ta-lét trong các tam giác :

+) \(\Delta AOB\)có MU // BO ( MT // BD; U\(\in\)MT; O \(\in\)BD ) \(\Rightarrow\frac{MU}{BO}=\frac{AM}{AB}\)(1)

+) \(\Delta OCD\)có VN // OC ( NT // AC; V \(\in\)NT; O \(\in\)AC ) \(\Rightarrow\frac{VN}{OC}=\frac{VD}{OD}\)(2)

+) \(\Delta OAD\)\(\orbr{\begin{cases}UT//OD\Rightarrow\frac{UT}{OD}=\frac{AT}{ÀD}\Rightarrow\frac{UT}{OD}=\frac{AM}{AB}\left(3\right)\\VT//OA\Rightarrow\frac{VT}{OA}=\frac{VD}{OD}\left(4\right)\end{cases}}\)

+) \(\Delta MNT\)\(\orbr{\begin{cases}EU//NT\left(AC//NT;E,U\in AC\right)\Rightarrow\frac{MU}{UT}=\frac{ME}{EN}\left(5\right)\\FV//MT\left(BD//MT;F,V\in BD\right)\Rightarrow\frac{VN}{VT}=\frac{FN}{FM}\left(6\right)\end{cases}}\)

Từ (1) (3) \(\Rightarrow\frac{MU}{OB}=\frac{UT}{OD}\Rightarrow\frac{MU}{UT}=\frac{OB}{OD}\)

Từ (2) (4) \(\Rightarrow\frac{VN}{OC}=\frac{VT}{OA}\Rightarrow\frac{VN}{VT}=\frac{OC}{OA}\)

Áp dụng hệ quả định lí Ta-lét trong \(\Delta OAD\)và \(\Delta OBC\)có BC // AD ( gt ) \(\Rightarrow\frac{OC}{OA}=\frac{OB}{OD}\)

\(\Rightarrow\frac{MU}{UT}=\frac{VN}{VT}\)kết hợp với điều (5) (6) \(\Rightarrow\frac{ME}{EN}=\frac{FN}{MF}\Rightarrow ME\cdot MF=FN\cdot EN\)

\(\Rightarrow ME\cdot\left(ME+EF\right)=FN\cdot\left(FN+EF\right)\Rightarrow ME^2+ME\cdot EF=FN^2+FN\cdot EF\)

\(\Rightarrow ME^2+ME\cdot EF-FN^2-FN\cdot EF=0\)\(\Rightarrow\left(ME-FN\right)\cdot\left(ME+FN\right)+EF\cdot\left(ME-FN\right)=0\)

\(\Rightarrow\left(ME-FN\right)\cdot\left(ME+FN+EF\right)=0\)

Vì các cạnh ME, FN, EF luôn lớn hơn 0 \(\Rightarrow\)không có trường hợp ME + FN + EF = 0

\(\Rightarrow ME-FN=0\Leftrightarrow ME=FN\)

28 tháng 2 2020

CÁI XANH XANH KIA LÀ GÌ VẬY???

27 tháng 3 2020

Kẻ MP//MD (P \(\in\)AD) ta có:

\(\frac{AM}{AB}=\frac{AP}{AD}\)mà \(\frac{AM}{AB}=\frac{CN}{CD}\left(gt\right)\)nên \(\frac{AP}{AD}=\frac{CN}{CD}\)=> NP//AC

Gọi giao của MP và AC là K, của NP và BD là H

\(\frac{MK}{PK}=\frac{OB}{OD}\)và \(\frac{NH}{HP}=\frac{OC}{OA}\)mà \(\frac{OB}{OD}=\frac{OC}{OA}\)

=> \(\frac{MK}{KP}=\frac{NH}{HP}\)do đó KH//MN

Các tứ giác MKHF và EKHN là hình bình hành nên 

MF=HK và EN=KH => MF=EN

Do đó: ME=NF (đpcm)

30 tháng 8 2021

Hình bên dưới nha.

Giải thích các bước giải:

M;N lần lượt là trung điểm của AD,BCM;N lần lượt là trung điểm của AD,BC

⇒MN là đường trung bình của hình thang ABCD⇒MN là đường trung bình của hình thang ABCD

⇒MN=2+52=3,5;MN//AB//CD⇒MN=2+52=3,5;MN//AB//CD

MN//AB⇒ME//AB mà M là trung điểm ABMN//AB⇒ME//AB mà M là trung điểm AB

⇒ME là đường trung bình của ΔABD⇒ME là đường trung bình của ΔABD

⇒ME=AB2=1⇒ME=AB2=1

:Chứng minh tương tự:NF là đường trung bình của ΔACB:Chứng minh tương tự:NF là đường trung bình của ΔACB

⇒NF=AB2=1⇒NF=AB2=1

⇒EF=MN−ME−MF=3,5−1−1=1,5⇒EF=MN−ME−MF=3,5−1−1=1,5

Vậy EF=1,5Vậy EF=1,5

30 tháng 8 2021

vote

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M,...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0

a:Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔDAB có 

M là trung điểm của AD

ME//AB

Do đó: E là trung điểm của BD

Xét ΔABC có 

N là trung điểm của BC

NF//AB

Do đó: F là trung điểm của AC

24 tháng 10 2021

SGK k để lm cảnh, lên Tech12 hoặc Vietjack

24 tháng 10 2021

a: Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔADC có 

M là trung điểm của AD

MF//DC

Do đó: F là trung điểm của AC

Xét ΔBDC có 

N là trung điểm của BC

NE//DC

Do đó: E là trung điểm của BD