Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a/ Trong ΔABCΔABC có N,PN,P lần lượt là trung điểm của BC,ACBC,AC
⇒ NPNP là đường trung bình ΔABCΔABC
⇒ NP//AB//CDNP//AB//CD (1)
Trong ΔBCDΔBCD có N,QN,Q lần lượt là trung điểm của BC,BDBC,BD
⇒ NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ//CD//ABNQ//CD//AB (1)
Trong hình thang ABCDABCD có M,NM,N lần lượt là trung điểm của AD,BCAD,BC
⇒ MNMN là đường trung bình hình thang ABCDABCD
⇒ MN//AB//CDMN//AB//CD (3)
Từ (1) (2) và (3) suy ra: M,N,P,QM,N,P,Q thằng hàng
Hay M,N,P,QM,N,P,Q nằm trên một đường thẳng
b/ Vì MNMN là đường trung bình thang ABCDABCD
nên MN=AB+CD2=a+b2MN=AB+CD2=a+b2
Ta có: NPNP là đường trung bình ΔABCΔABC
⇒ NP=AB2=a2NP=AB2=a2
Ta lại có: NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ=CD2=b2NQ=CD2=b2
Vì a>b nên PQ=NP−NQ=a2−b2=a−b2PQ=NP−NQ=a2−b2=a−b2
c/ Ta có: MN=MP+PQ+QNMN=MP+PQ+QN
⇒a+b2=3.a−b2⇒a+b2=3.a−b2
⇒a+b=3a−3b⇒a+b=3a−3b
⇒3a−a=b+3b⇒3a−a=b+3b
⇒2a=4b⇒2a=4b
⇒a=2b⇒a=2b
Chúc bạn học tốt !!!
^HT^
Tự vẽ hình nha bạn
Ta có
AB//CD
M trung điểm của AD
P là trung điểm của AC
MP là đường trung bình của tam giác ACD
=> MQ // và bằng 1/2 CD
chứng minh tương tự ta đc
MQ là đường trung bình của tam giác ABD
Mà AB//CD
=>MQ//MP
theo tiên đề Ơ clit
3 điểm M,P,Q thẳng hàng(1)
chứng minh tương tự ta đk 3 điểm P,Q,N thẳng hàng(2)
từ (1) và (2)
=> DPCM
b,M là trung điểm của AD
N là trung điểm của BC
=> MN là đường trung bình của hình thang ABCD
=> MN= (a+b)/2
PN là đường trung bình của tam giác ABC
=> PN // và bằng 1/2 AB
QN là đường trung bình của tam giác BCD
=> QN // và bằng 1/2NP
Mà PN-QN=PQ=1/2AB-1/2CD
=(a-b)/2
c,
Nếu MP=NQ=PQ
=>MQ=NP=2QN
Ta có
PN =1/2AB
QN=1/2CD
=>2QN=CD
Mà QN=1/2PN
=> PN=CD
=> CD=1/2 AB
=> DPCM
Cho hình thang ABCD (đáy lớn AB//CD).Gọi M,N,P,Q theo thứ tự là trung điểm của các đoạn thẳng AD,BC,AC,BD
a, Cm 4 điểm M,N,P,Q thẳng hàng
b, Tính MN và PQ biết AB=a, CD=b,
c, Cm nếu MP=PQ=QN thì AB=2CD
vẽ cả hình cho mình nha
ai nhanh mình k cho
a: DN/BD=DM/DA
CP/CA=CQ/CB
mà DM/DA=CQ/CB
nên DN/BD=CP/CA
b: Xét ΔDAB có MN//AB
nên MN/AB=DM/DA
Xet ΔCAB có PQ//AB
nên PQ/AB=CQ/CP
mà DM/DA=CQ/CP
nên MN=PQ
a: Xét ΔADC có M,P lần lượt là trung điểm của AD và AC
nên MP là đường trung bình
=>MP//DC(1) và MP=1/2DC
Xét ΔDAB có DM/DA=DQ/DB
nên MQ//AB và MQ=AB/2
=>MQ//DC(2)
Xét ΔBCD có BQ/BD=BN/BC
nên NQ//DC(3)
Từ (1), (2) và (3) suy ra M,N,P,Q thẳng hàng
b: MN=(a+b)/2
\(PQ=MN-MP-QN=\dfrac{a+b}{2}-\dfrac{b}{2}-\dfrac{b}{2}=\dfrac{a-b}{2}\)