K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Gọi M là trung điểm BC => BM=CM 
Xét tam giác ABC có: 
BM=CM 
AE=EC (giả thiết vì E la trung điểm của AC) 
Nên: EM là đường trung bình trong tam giác ABC 
=>EM//AB và EM=AB/2 
Tương tự: Xét tam giác BCD có: 
FM là đường trung bình trong tam giác BCD 
=>FM//CD và FM=CD/2 
Lại có: 
FM//CD 
mà AB//CD (theo giả thiết ABCD la hthang) 
Nên: FM//AB 
Mà EM//AB 
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng. 
Vậy,EF=FM-EM=(CD-AB)/2  

18 tháng 10 2023

 Dựng hình bình hành ABPC. Khi đó \(AD=AB+CD=CP+CD=DP\)

 Ta có \(\dfrac{AB}{FE}=\dfrac{DA}{DF}\)\(\dfrac{CD}{FE}=\dfrac{DA}{AF}\)

 \(\Rightarrow\dfrac{AB+CD}{FE}=DA\left(\dfrac{1}{DF}+\dfrac{1}{AF}\right)\)

\(\Rightarrow\dfrac{1}{FE}=\dfrac{DA}{DF.AF}\) \(\Rightarrow\dfrac{DF}{FE}=\dfrac{DP}{FA}\) \(\Rightarrow\dfrac{DF}{DC}=\dfrac{DP}{DA}=1\)

 Từ đó \(\Delta DFC\) cân tại D. \(\Rightarrow\widehat{DFC}=\widehat{DCF}=\widehat{CFE}\) \(\Rightarrow\) FC là tia phân giác của \(\widehat{DFE}\). CMTT, FB là tia phân giác của \(\widehat{AFE}\). Do đó \(\widehat{BFC}=90^o\) (đpcm)

24 tháng 11 2022

Xét ΔABD có AB=AD và góc BAD=60 độ

nên ΔABD đều

Ta có: ΔDAB cân tại D

mà DE là đường trung tuyến

nên DE vuông góc với BE

=>E nằm trên đường tròn đường kính BD(1)

Ta có:ΔBAD cân tại B

ma BH là đường trung tuyến

nên BH vuông góc với HD

=>H nằm trên đường tròn đường kính BD(2)

Xét ΔCBD có CB=CD và góc BCD=60 độ

nên ΔCBD đều

Ta có: ΔBDC cân tại D

mà DF là đường trung tuyến

nen DF vuông góc với BF

=>F nằm trên đường tròn đường kính BD(3)

Ta có: ΔBDC cân tại B

mà BG là đường trung tuyến

nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)

Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn

NV
6 tháng 8 2021

Do ABCD là hình thoi \(\Rightarrow\Delta BCD\) cân tại C

Mà \(C=60^0\Rightarrow\Delta BCD\) đều

Hoàn toàn tương tự, ta có tam giác ABD đều

\(\Rightarrow AB=BC=CD=DA=BD\) (1)

Gọi O là giao điểm 2 đường chéo \(\Rightarrow OA\perp OB\)

Trong tam giác vuông OAB, do E là trung điểm AB nên OE là trung tuyến ứng với cạnh huyền

\(\Rightarrow OE=\dfrac{1}{2}AB\) (2)

Mà O là trung điểm BD (tính chất hình thoi) \(\Rightarrow OB=\dfrac{1}{2}BD\) (3)

(1);(2);(3) \(\Rightarrow OE=OB\)

Hoàn toàn tương tự, ta có: 

\(OE=OB=OF=OG=OD=OH\)

\(\Rightarrow\) Các điểm E, B, F, G, D, H cùng thuộc 1 đường tròn tâm O bán kính OB

NV
6 tháng 8 2021

undefined