Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng AB+CD là:
\(7.2=14\left(cm\right)\)
CD là:
\(14-6=8\left(cm\right)\)
Tớ xin phép bổ sung đề bài là : \(N\in BC\)ạ, vì nếu không có dữ kiện này thì MN có vô vàn giá trị nhé.
Gọi F là giao điểm của MN và AC, vì \(MN//AB;AB//CD\left(gt\right)\)
\(\Rightarrow MF//AB//CD;NF//AB//CD\)
Ta có : \(\frac{MA}{MD}=\frac{2}{5}\Rightarrow\frac{MA}{AD}=\frac{2}{7}\left(M\in AD\right)\)
Áp dụng định lí Ta-lét trong \(\Delta ADC\left(MF//DC\right)\)có :
\(\frac{AF}{AC}=\frac{MA}{AD}=\frac{MF}{DC}\Rightarrow\frac{AF}{AC}=\frac{2}{7}=\frac{MF}{70}\Rightarrow MF=\frac{2\cdot70}{7}=20\)( đơn vị đo )
Vì \(\frac{AF}{AC}=\frac{2}{7}\Rightarrow\frac{CF}{AC}=\frac{5}{7}\left(F\in AC\right)\)
Áp dụng định lí Ta-lét trong \(\Delta ABC\left(NF//AB\right)\)có :
\(\frac{CF}{AC}=\frac{NF}{AB}\Rightarrow\frac{NF}{28}=\frac{5}{7}\Rightarrow NF=\frac{5\cdot28}{7}=20\)( đơn vị đo )
Do \(F\in MN\Rightarrow MF+NF=MN\Rightarrow MN=20+20=40\)( đơn vị đo )
Cảm ơn Hoài An, đề bài sẽ là vẽ MN//AB, N thuộc BC nhé. Tại trưa nay vội quá tớ quên gõ vào.
\(MN=\dfrac{AB+CD}{2}=\dfrac{9+11}{2}=10\left(cm\right)\)
Độ dài đường trung bình hthang:
\(\dfrac{AB+CD}{2}=\dfrac{7+11}{2}=\dfrac{18}{2}=9\left(cm\right)\)
Xét hình thang ABCD có:
\(MA=MB\left(gt\right)\)
\(NB=NC\left(gt\right)\)
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow\)\(MN=\frac{AB+CD}{2}\)( định lý 4 về đường trung bình của hình thang )
Hay \(28=\frac{AB+CD}{2}\)
\(\Rightarrow AB+CD=28\cdot2=56\)
Mặt khác ta có: \(\frac{AB}{CD}=\frac{3}{5}\left(gt\right)\)
Hay: \(\frac{AB}{3}=\frac{CD}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{AB}{3}=\frac{CD}{5}=\frac{AB+CD}{3+5}=\frac{56}{8}=7\)
\(\Rightarrow\orbr{\begin{cases}AB=7\cdot3=21\\CD=7\cdot5=35\end{cases}}\)
Vậy: \(AB=21cm\)
\(CD=35cm\)
\(\frac{AB}{CD}=\frac{3}{4}\Leftrightarrow\frac{AB}{3}=\frac{CD}{4}\) (t/c tỉ lệ thức)
Vì MN là đg trung bình của ht ABCD=>\(MN=\frac{AB+CD}{2}\Rightarrow2MN=AB+CD=56\)(cm)
Theo t/c dãy tỉ số=nhau:
\(\frac{AB}{3}=\frac{CD}{4}=\frac{AB+CD}{3+4}=\frac{56}{7}=8\left(cm\right)\)
=>AB=24(cm);CD=32(cm)
Vậy.........