Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMDC có
\(\widehat{MAB}=\widehat{MDC}\)
\(\widehat{M}\) chung
Do đó: ΔMAB∼ΔMDC
b: Ta có: ΔMAB∼ΔMDC
nên AB/DC=MA/MD
hay \(AB\cdot MD=DC\cdot MA\)
a: Xét ΔMAB và ΔMDC có
\(\widehat{MAB}=\widehat{MDC}\)
\(\widehat{M}\) chung
Do đó: ΔMAB∼ΔMDC
b: Ta có: ΔMAB∼ΔMDC
nên AB/DC=MA/MD
hay \(AB\cdot MD=DC\cdot MA\)
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔCOD cân tại O
a: Xét ΔFAB và ΔFCD có
góc FAB=góc FCD
góc AFB=góc CFD
=>ΔFAB đồng dạng với ΔFCD
b: ΔFAB đồng dạng với ΔFCD
=>FA/FC=FB/FD
=>FA*FD=FB*FC
a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)
⇔ AB = DM và AB // DM
Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.
b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC
c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2
Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)
d) Ta có :
Xét tam giác vuông AHB, ta có :
Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)
⇒ BC = AM = 3 (cm)
Ta có:
M là trung điểm của DC nên
SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)
Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)
⇔ SABD = SBMD = 3 (cm2)
Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)