Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDAB có
E là trung điểm của AD
P là trung điểm của BD
Do đó: EP là đường trung bình
=>EP//AB và EP=AB/2
Xét ΔCAB có
Q là trung điểm của AC
F là trung điểm của BC
Do đó: QF là đường trung bình
=>QF//AB và QF=AB/2
Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình
=>EF//AB//CD
Ta có: EF//AB
EP//AB
EF,EP có điểm chung là E
Do đó: E,F,P thẳng hàng(1)
Ta có: EF//AB
QF//AB
FE,FQ có điểm chung là F
Do đó:F,E,Q thẳng hàng(2)
Từ (1) và (2) suy ra E,P,Q,F thẳng hàng
b: \(EF=\dfrac{AB+CD}{2}=\dfrac{3}{2}AB\)
\(PQ=EF-EP-QF=\dfrac{3}{2}AB-\dfrac{1}{2}AB-\dfrac{1}{2}AB=\dfrac{1}{2}AB\)
=>EP=PQ=QF
Gọi I là trung điểm của AB.
Giả sử đường thẳng IE cắt CD tại K1
Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD
Giả sử đường thẳng IF cắt CD tại K2
Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD
do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau
Vậy ta có đpcm
Kẻ đường chéo AC cắt EF tại I
Trong ΔADC, ta có: EI // CD
Suy ra:
Suy ra:
Lại có :
Suy ra:
Từ (1) và (2) suy ra:
Trong ΔABC, ta có: FI // AB
Suy ra: (định lí ta-lét) (3)
Trong ΔADC, ta có : EI // CD
Suy ra: (định lí ta-lét) (4)
Từ (3) và (4) suy ra
Trong ΔABC, ta có: IF // AB
Suy ra: (định lí ta-lét)
Suy ra:
Ta có:
Suy ra:
Từ (5) và (6) suy ra:
Vậy: