Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đường trung bình hthang:
\(\dfrac{AB+CD}{2}=\dfrac{7+11}{2}=\dfrac{18}{2}=9\left(cm\right)\)
BD cắt AC tại O
xét tam giác ABO và tam giác CDO
\(\widehat{aob}=\widehat{cod}\)
\(\widehat{abo}=\widehat{cdo}\)(ab//cd)
do đó tam giác ABO bằng tam giác CDO
\(\Rightarrow\frac{AB}{CD}=\frac{AO}{BO}=\frac{CO}{DO}=\frac{AO+CO}{BO+DO}=\frac{AC}{BD}=\frac{AC}{6}=\frac{3}{7}\)
\(\Rightarrow AC=\frac{6.3}{7}=\frac{18}{7}\left(cm\right)\)
a: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
AD=BC
góc D=góc C
=>ΔAKD=ΔBHC
=>CH=DK
Xét tứ giác ABHK có
AB//HK
AK//HB
=>ABHK là hình bình hành
=>AB=HK
b: KH=AB=7cm
=>DK+HC=13-7=6cm
=>DK=HC=6/2=3cm
\(BH=\sqrt{13^2-3^2}=\sqrt{160}=4\sqrt{10}\left(cm\right)\)
\(S_{ABCD}=\dfrac{1}{2}\cdot BH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\sqrt{10}\left(7+13\right)=40\sqrt{10}\left(cm^2\right)\)
Xét hthang ABCD có:
M là trung điểm AD(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình
\(\Rightarrow MN=\dfrac{AB+CD}{2}\left(t/c\right)\)
\(\Rightarrow AB=2MN-CD=2.3-4=2\left(cm\right)\)