K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

A B C D N M E

a, kẻ AM cắt CD tại E 

xét tam giác AMB và tam giác EMD có : góc AMB = góc EMD (đối đỉnh)

DM = MB do M là trung điểm của BD (gt)

góc ABM = góc MDE (so le trong AB // DC)

=> tam giác AMB = tam giác EMD (g-c-g)                                                      (1)

=> AM = ME (đn) có M nằm giữa A và E 

=> M là trung điểm của AE 

N là trugn điểm của AC (gt) ; xét tam giác AEC 

=> MN là đường trung bình của tam giác AEC  (đn)                                              (2)

=> MN // EC   (Đl)

CE // AB

=>  MN // AB 

b, (2) => MN = EC/2

EC = CD - DE

=> MN = (CD - DE) : 2

(1) => DE = AB 

=> MN = (CD - AB) : 2

a: Gọi F là trung điểm của BC

Xét ΔCAB có

N,F lần lượt là trung điểm của CA,CB

nên NFlà đường trung bình

=>NF//AB và NF=AB/2

Xét ΔDCB có

M,F lần lượt là trung điểm của BD,BC

nên MF là đường trung bình

=>MF//CD và MF=CD/2

=>MF//AB

mà NF//AB

nên M,N,F thẳng hàng

=>MN//AB

b: MN=MF-FN=1/2(CD-AB)

18 tháng 3 2018

Vì PM là đường trung bình của tam giác DAB nên:

PM = AB/2 (tính chất đường trung bình tam giác)

Vì PN là đường trung bình của tam giác ΔACD nên:

PN = CD/2 (tính chất đường trung hình tam giác)

Mà PN = PM + MN

Suy ra: MN = PN – PM = CD/2 - AB/2 = (CD-AB)/2

26 tháng 2 2017

AB//BC ?

26 tháng 2 2017

 Trước tiên kẻ AM cắt CD tại I 

Ta xét tam giác AMB và IMD 
Hai tam giác đó bằng nhau vì MB=MD (gt) và góc AMB=IMD (đđ) và góc ABM=IDM (so le trong vì AB//CD) 

Vì vậy mà AB=ID và MA=MI 

Xét tam giác AIC có MA=MI và NA=NC nên MN là đường trung bình của tam giác AIC nên MN//CI và MN=(1/2)CI 

Do CI=CD-ID cũng như CI=CD-AB (do AB=ID cmt) và MN=(1/2)CI 
nên MN=(1/2)(CD-AB)

26 tháng 3 2019

Gọi P là trung điểm của AD, nối PM

Trong ΔDAB ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: PM // AB (Định lí đảo của định lí Ta-lét) (1)

Trong △ ACD, ta có Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: PN // CD (định lí đảo định lí Ta-lét) (2)

Từ (1) và (2) và theo tiên đề Ơ-clít suy ra P, M, N thẳng hàng.

Vậy MN // CD hay MN // AB.

19 tháng 3 2020

a. Gọi P là trung điểm của AD, nối PM

Trong ΔDAB ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: PM // AB (Định lí đảo của định lí Ta-lét) (1)

Trong ΔACD, ta có Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: PN // CD (định lí đảo định lí Ta-lét) (2)

Từ (1) và (2) và theo tiên đề Ơ-clít suy ra P, M, N thẳng hàng.

Vậy MN // CD hay MN // AB.

b. Vì PM là đường trung bình của tam giác DAB nên:

PM = AB/2 (tính chất đường trung bình tam giác)

Vì PN là đường trung bình của tam giác ΔACD nên:

PN = CD/2 (tính chất đường trung hình tam giác)

Mà PN = PM + MN

Suy ra: MN = PN – PM = CD/2 - AB/2 = (CD-AB)/2

25 tháng 1 2018

Gọi P là trung điểm của AD. Ta chứng minh được NP và MP lần lượt là đường trung bình của tam giác ABD và ADC nên suy ra NP//AB và MP//DC. Mặt khác AB//CD nên ta có P, N, M thẳng hàng MN//AB//DC

13 tháng 2 2018

A B C D O M N 5,6

Xin lỗi Tú nhé hình mình vẽ chưa được cân lắm :( thông cảm

ABCD là hình thang cân nên AC = BD ; OA = OB ; OC = OD ; MN // AB // CD

\(MD=3.MO\Rightarrow OB=2.MO\) và \(OD=4.MO\)

Ta có : \(\frac{MN}{CD}=\frac{OM}{OD}=\frac{1}{4}\)\(\Rightarrow\)\(MN=\frac{1}{4}.CD=\frac{1}{4}.5,6=1,4\left(cm\right)\)

Mà \(\frac{AB}{CD}=\frac{OB}{OD}\Rightarrow\frac{AB}{CD}=\frac{1}{2}\)

\(\Rightarrow\)\(AB=\frac{1}{2}.CD=\frac{1}{2}.5,6=2,8\left(cm\right)\)

b) \(\frac{CD-AB}{2}=\frac{5,6-2,8}{2}=1,4\left(cm\right)\)

\(\Rightarrow\) \(MN=\frac{CD-AB}{2}\)

xong rùi nhé có gì sai sót bỏ qua dùm cái 

12 tháng 3 2020

Hiếu ơi, cậu chưa chứng minh MN // AB// CD 

10 tháng 10 2018

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

2 tháng 1 2018

Vì ABCD là hình thang cân có AB // CD nên:

AC = BD (1)

Xét ΔADC và ΔBCD, ta có:

AC = BD (chứng minh trên)

AD = BC (ABCD cân)

CD cạnh chung

Suy ra: △ ADC =  △ BCD (c.c.c)

Suy ra :  ∠ (ACD) = ∠ ( BDC)

Hay  ∠ (OCD) =  ∠ ( ODC)

Suy ra tam giác OCD cân tại O

Suy ra: OD = OC (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: OA = OB

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Mà OA = OB ⇒ OM = ON

Lại có: MD = 3MO (gt) ⇒ NC = 3NO

Trong ΔOCD, ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: MN // CD (Định lí đảo của định lí Ta-lét)

Ta có: OD = OM + MD = OM + 3OM = 4OM

Trong ΔOCD, ta có: MN // CD

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 Hệ quả định lí Ta-lét)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: MN = 1/4 CD = 1/4 .5,6 = 1,4 (cm)

Ta có: MB = MD (gt)

Suy ra: MB = 3OM hay OB = 2OM

Lại có: AB // CD (gt) suy ra: MN // AB

Ta có: MN // AB, áp dụng hệ quả định lý Ta – let ta được:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy: AB = 2MN = 2.1,4 = 2,8(cm)