Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy N là trung điểm của của AD .
\(\Rightarrow\) MN là đường trung bình của hình thang ABCD .
\(\Rightarrow MN=\dfrac{AB+CD}{2}=\dfrac{3+7}{2}=5cm\)
Mà : \(\dfrac{AB+CD}{2}=\dfrac{AD}{2}=5\)
\(\Rightarrow MN=\dfrac{AD}{2}\) ( Đường trung tuyến ứng với cạnh huyền = nữa cạnh huyền)
\(\Rightarrow\Delta AMD\) vuông tại M hay \(AM\perp DM\)
Bạn tự vẽ hình nhé.
Lời giải:
Trên \(AD\) lấy điểm $T$ thỏa mãn $AT=AB=3$
\(\Rightarrow DT=AD-AT=10-3=7=DC\)
Do đó, tam giác $ATB$ cân tại $A$ và tam giác $TDC$ cân tại $D$
Khi đó, ta có:
\(\left\{\begin{matrix} \angle ATB=\frac{180^0-\angle TAB}{2}\\ \angle DTC=\frac{180^0-\angle TDC}{2}\end{matrix}\right.\Rightarrow \angle ATB+\angle DTC=\frac{360^0-(\angle TAB+\angle TDC)}{2}\)
Mà do $ABCD$ là hình thang nên
\(\angle TAB+\angle TDC=180^0\Rightarrow \angle ATB+\angle DTC=90^0\)
\(\Rightarrow BTC=180^0-(\angle ATB+\angle DTC)=90^0\)
\(\Rightarrow BT\perp TC\)
Tam giác vuông $BTC$ có $M$ là trung điểm của $BC$ nên \(TM=BM=MC\)
Thấy: \(\left\{\begin{matrix} AT=AB\\ MT=MB\end{matrix}\right.\Rightarrow AM\) là đường trung trực của $TB$ hay \(AM\perp BT\)
Tương tự, \(DM\perp CT\)
Mà \(BT\perp CT (\text{cmt})\Rightarrow AM\perp DM\) (đpcm).