K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

Chọn D.

(h.2.62) Gọi A là một điểm thuộc đường tròn đáy của hình nón. Dựa vào giả thiết, ta có đường sinh SA = a 2  và góc giữa đường sinh và mặt phẳng đáy là ∠ SAO = 60 °

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trong tam giác vuông SAO, ta có:

OA = SA.cos60 °  = (a 2 )/2;

SO = SA.sin60 °  = (a 6 )/2.

Diện tích xung quanh hình nón:

S xq = πrl = πa 2

Thể tích của khối nón tròn xoay:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

18 tháng 6 2019

Gọi A là một điểm thuộc đường tròn đáy hình nón.

Theo giải thiết ta có đường sinh  S A = a 2  và góc giữa đường sinh và mặt phẳng đáy là  S A O ^ = 60 ° .

Trong tam giác vuông SAO, ta có:

22 tháng 5 2017

Mặt nón tròn xoay và mặt trụ tròn xoay

1 tháng 4 2017

a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r = và đường cao h = r, đwòng sinh l = a.

Vậy Sxq = πrl = ( đơn vị diện tích)

Sđáy = = ( đơn vị diện tích);

Vnón = ( đơn vị thể tích)

b) Gọi tâm đáy là O và trung điểm cạnh BC là I.

Theo giả thiết, = 600.

Ta có diện tích ∆ SBC là: S = (SI.BC)/2

Ta có SO + SI.sin600 = .

Vậy .

Ta có ∆ OIB vuông ở I và BO = r = ;

OI = SI.cos600 = .

Vậy BI = và BC = .

Do đó S = (SI.BC)/2 = (đơn vị diện tích)


13 tháng 7 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi r là bán kính của đường tròn đáy.

Ta có OA = r = l.cos α (với O là tâm của đường tròn đáy và A là một điểm trên đường tròn đó).

Ta suy ra: S xq = πrl = πl 2 cosα

Khối nón có chiều cao h = DO = lsin α . Do đó thể tích V của khối nón được tính theo công thức

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy :

Giải sách bài tập Toán 12 | Giải sbt Toán 12

22 tháng 11 2018

3 tháng 3 2019

Đáp án A

Gọi O là tâm của hình vuông ABCD.

Do S.ABCD là hình chóp đều nên SO  (ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)

26 tháng 4 2017

Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12

b)-Mặt phẳng (DMN) cắt hình lập phương theo thiết diện MEDNF trong đó ME // ND, FN //DE và chia hình lập phương thành hai khối đa diện (H) và (H’), gọi phần khối lập phương chứa A, B, A’, mặt phẳng (DMN) là (H)

-Chia (H) thành các hình chóp F.DBN, D.ABFMA’ và D.A’EM.

Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12

2 tháng 7 2019

Đáp án A