Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Áp dụng công thức tính diện tích xung quanh của hình nón: S x q = π R l .
Cách giải: Áp dụng công thức ta có: S = π 3 .4 = 4 3 π (đvdt).
Đáp án B.
Đường kính đáy d = 2 R = 2 a 2 .
Do góc ở đỉnh bằng 60 0 nên thiết diện qua trục là tam giác đều.
Độ dài đường sinh là: l = d = 2 a 2
Diện tích xung quanh hình nón là:
S x q = π R l = π . a 2 .2 a 2 = 4 π a 2 .
Đáp án A.
Kí hiệu như hình vẽ.
Ta thấy I K = r ' là bán kính đáy của hình chóp, A I = h là chiều cao của hình chóp.
Tam giác vuông tại K có IK là đường cao
⇒ I K 2 = A I . I M ⇒ r ' 2 = h . 2 r − h
Ta có V c o h p = 1 3 . π r ' 2 . h = 1 3 . π . h . h . 2 r − h = 4 3 π . h 2 . h 2 2 r − h .
Áp dụng bất đẳng thức Cauchy ta có
h 2 . h 2 . 2 r − h ≤ h 2 + h 2 + 2 r − h 3 27 = 8 r 3 27
⇔ V c h o p ≤ 4 3 π . 8 r 3 27 = 32 81 . π r 3
Dấu bằng xảy ra khi h 2 = 2 r − h ⇔ h = 4 r 3 . Vậy ta chọn A
Đáp án là C