Cho hình nón có đường cao h = 10cm và thiết diện cắt bởi mặt phẳng qua trục của hình nón là m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

Đáp án B

Từ giả thiết ta có : 2α = 90o => α = 45o => h = r; l = r 2

Diện tích xung quanh của hình nón là : S xq   = πrl = π r 2 2  = π 2  => r = 1 => h = 1

1 tháng 4 2017

a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r = và đường cao h = r, đwòng sinh l = a.

Vậy Sxq = πrl = ( đơn vị diện tích)

Sđáy = = ( đơn vị diện tích);

Vnón = ( đơn vị thể tích)

b) Gọi tâm đáy là O và trung điểm cạnh BC là I.

Theo giả thiết, = 600.

Ta có diện tích ∆ SBC là: S = (SI.BC)/2

Ta có SO + SI.sin600 = .

Vậy .

Ta có ∆ OIB vuông ở I và BO = r = ;

OI = SI.cos600 = .

Vậy BI = và BC = .

Do đó S = (SI.BC)/2 = (đơn vị diện tích)


15 tháng 12 2016

gọi thiết diện là tam giác đềuSAB (S chính là đỉnh hình nón,do thiết diện đi qua trục

R=0,5.AB=\(\sqrt{2}\)a

S=πRl=π\(\sqrt{2}\)a.2 \(\sqrt{2}\)a=4\(a^2\)

26 tháng 4 2017

Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12

b)-Mặt phẳng (DMN) cắt hình lập phương theo thiết diện MEDNF trong đó ME // ND, FN //DE và chia hình lập phương thành hai khối đa diện (H) và (H’), gọi phần khối lập phương chứa A, B, A’, mặt phẳng (DMN) là (H)

-Chia (H) thành các hình chóp F.DBN, D.ABFMA’ và D.A’EM.

Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12

4 tháng 11 2018

Đáp án A

Gọi S là đỉnh hình nón, O là tâm đáy, A là một điểm thuộc đường tròn đáy.

27 tháng 4 2017

Hỏi đáp Toán

6 tháng 5 2019

Đáp án đúng : D

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

24 tháng 5 2017

Chọn D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.2.60) Bán kính đáy của hình nón là a, đường sinh của hình nón là 2a.

Do đó, ta có:

S 1  = π Rl =  π .a.2a = 2 πa 2  (1)

Mặt cầu có bán kính là a 3 /2, nên ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ (1) và (2) suy ra: 2 S 2  = 3 S 1