K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

Trong hình lập phương ABCD.A'B'C'D' ta có AB' // DC'

\(\Rightarrow\widehat{\left(AB',CD'\right)}=\widehat{\left(DC',CD'\right)}=90^0\) (Do \(CDD'C'\) là hình vuông)

Đáp án C

NV
17 tháng 4 2022

Ta có: \(CD'||A'B\)

Mà \(A'B\perp AB'\) (hai đường chéo hv)

\(\Rightarrow AB'\perp CD'\)

17 tháng 4 2022

A

17 tháng 4 2022

D

17 tháng 4 2022

D

17 tháng 4 2022

C

NV
17 tháng 4 2022

\(A'C'||AC\Rightarrow\) góc cần tìm là góc \(\widehat{CAB'}\)

Mặt khác \(AB'=AC=B'C\) (các đường chéo của hình vuông bằng nhau)

\(\Rightarrow\Delta AB'C\) đều

\(\Rightarrow\widehat{CAB'}=60^0\)

17 tháng 4 2022

D.\(90^o\)

17 tháng 4 2022

D

NV
8 tháng 3 2022

Do \(AC||A'C'\Rightarrow\widehat{\left(A'C';B'C\right)}=\widehat{\left(AC;B'C\right)}=\widehat{ACB'}\)

\(AC=AB'=B'C=AB\sqrt{2}\Rightarrow\Delta ACB'\) đều

\(\Rightarrow\widehat{ACB'}=60^0\)

NV
14 tháng 3 2022

a. Gọi cạnh lập phương là a

Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\) 

\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)

\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)

b.

Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D

Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)

c.

Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB

Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)

d.

\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều 

14 tháng 3 2022

Thầy ơi thầy giúp em dạng này với ạ, em sắp thi rồi ạ :'((  https://hoc24.vn/cau-hoi/a-co-bao-nhieu-gia-tri-cua-a-de-limlimits-xrightarrowinftyleftsqrtx2-ax2021-x1righta2b-tim-a-de-ham-so-fxleftbeginmatrixdfracx31x1khixne-13akhix-1end.5243579572507

NV
4 tháng 4 2021

ABB'A' và CDD'C' là hình vuông \(\Rightarrow CD'\perp DC'\Rightarrow CD'\perp\left(ADC'B'\right)\)

Gọi M là giao điểm CD' và DC' \(\Rightarrow\) M là trung điểm 2 đoạn nói trên

Trong mp (ADC'B'), từ M kẻ \(MH\perp AC'\Rightarrow MH\) là đường vuông góc chung của AC' và CD'

\(DC'=AB'=\sqrt{AB^2+A'A^2}=a\sqrt{2}\)

\(\Rightarrow AD=B'C'=\sqrt{AC'^2-AB'^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ADC'\) vuông cân tại D \(\Rightarrow\Delta MHC'\) vuông cân tại H

\(\Rightarrow MH=\dfrac{MC'}{\sqrt{2}}=\dfrac{DC'}{2\sqrt{2}}=\dfrac{a}{2}\)