K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 7 2020

Gọi M là trung điểm A'C \(\Rightarrow\) M là trung điểm BD'

\(\Rightarrow MD'=\frac{1}{2}BD'\)

\(GM=\frac{1}{3}BM=\frac{1}{3}MD'\Rightarrow GD'=\frac{2}{3}BD'\)

\(\Rightarrow d\left(G;\left(CDD'C'\right)\right)=\frac{2}{3}d\left(B;\left(CDD'C'\right)\right)=\frac{2}{3}BC=\frac{2a}{3}\)

\(\Rightarrow V_{GC'DD'}=\frac{1}{3}.\frac{2a}{3}.\frac{1}{2}a^2=\frac{a^3}{9}\)

20 tháng 3 2018

Chọn D

Gọi P, Q lần lượt là trung điểm của BC và C'D'.

Ta có  S ∆ O P N = 1 4 S ∆ B C D = 1 8 S A B C D = a 2 8 ⇒ V O P N . O ' M Q = a 3 8

  V O O ' M N = V O P N . O ' M Q - V M . O P N - V N . O ' M Q = a 3 8 - 1 3 . a 3 8 - 1 3 . a 3 8 = a 3 24

2 tháng 4 2016

_ Thể tích khối lăng trụ : 

Gọi D là trung điểm của BC ta có : \(BC\perp AD\Rightarrow BC\perp A'D\Rightarrow\widehat{ADA'}=60^0\)

Ta cso \(AA'=AD.\tan\widehat{ADA'}=\frac{3a}{2};S_{ABC}=\frac{a^2\sqrt{3}}{4}\)

Do đó \(V_{ABC.A'B'C'=}S_{ABC}.AA'=\frac{3a^2\sqrt{3}}{8}\)

- Bán kính mặt cầu ngoại tiếp tứ diện GABC :

Ta có I là giao điểm của GH với đường trung trực của AG trong mặt phẳng (AGH)

Gọi E là trung điểm của AG, ta có :

\(R=GI=\frac{GE.GA}{GH}=\frac{GA^2}{2GH}\)

Ta có :

\(GH=\frac{AA'}{3}=\frac{a}{2};AH=\frac{a\sqrt{3}}{3};GA^2=GH^2+AH^2=\frac{7a^2}{12}\)

Do đó \(R=\frac{7a^2}{2.12}.\frac{2}{a}=\frac{7a}{12}\)

2 tháng 4 2016

A B C D G H A' B' C' A E G H I

20 tháng 5 2017

Khối đa diện

nên \(V_{A'B'C'D'}=\dfrac{1}{27}V_{ABCD}=\dfrac{\sqrt{2}}{324}a^2\)

4 tháng 8 2018

Chọn D

Tứ diện đều ABCD  ⇒ A G 1 ⊥ B C D

Ta có ngay 

Cạnh  C G 1 = B C 3 = 3 ⇒ G 1 A = A C 2 - G 1 C 2 = 6 ⇒ d G 1 ; G 2 G 3 G 4 = 6 3

Lại có  G 2 G 3 M N = A G 2 A M = 2 3 ⇒ G 2 G 3 = 2 3 M N = 1 3 B D = 1

Tương tự GG=1, GG=1 ⇒ ∆ G 2 G 3 G 3  là tam giác đều có cạnh bằng 1

 

23 tháng 10 2017

Đáp án B

17 tháng 12 2018

Đáp án là B

Gọi x là độ dài của cạnh hình lập phương

Ta có: 

Theo giả thiết, 

Vậy thể tích lập phương là: 

7 tháng 7 2018

11 tháng 6 2017

Chọn D

(Do E, F, G lần lượt là trung điểm của BC, BD, CD).

Do mặt phẳng (MNP) (BCD) nên 

11 tháng 11 2021

Tại sao SEFG/SBCD=1/4 ak

27 tháng 8 2018

27 tháng 4 2019

Đáp án A