K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

Đáp án B

2 tháng 5 2018

15 tháng 8 2017

Chọn B.

 

Gọi M,G lần lượt là trung điểm của BC và trọng tâm G của tam giác ABC.

Do tam giác ABC đều cạnh a nên 

Trong mặt phẳng (AA'M)  kẻ MH ⊥ AA'. Khi đó: 

Vậy MH là đoạn vuông góc chung của AA' và BC nên MH =  a 3 4 .

Trong tam giác AA'G kẻ 

Xét tam giác AA'G vuông tại G ta có: 

Vậy thể tích của khối lăng trụ đã cho là  

 

29 tháng 3 2018

Đáp án là D

Đáy là tam giác đều cạnh bằng 2a . Diện tích đáy là

Đường thẳng A'B tạo với đáy góc  60 0 => BA'B' =  60 0  .

Xét tam giác BA'B' vuông tại B ' có

Thể tích khối lăng trụ là

7 tháng 10 2018

Chọn D

20 tháng 11 2018

Đáp án C

8 tháng 10 2017

6 tháng 10 2018

28 tháng 3 2016

A H B C A' B' C' K I

Gọi H là trung điểm của AB, \(A'H\perp\left(ABC\right)\) và \(\widehat{A'CH}=60^0\)

Do đó \(A'H=CH.\tan\widehat{A'CH}=\frac{3a}{2}\)

Do đó thể tích khối lăng trụ là \(V_{ABC.A'B'C'}=\frac{3\sqrt{3}a^3}{8}\)

Gọi I là hình chiếu vuông góc của H lên AC; K là hình chiếu vuông góc của H lên A'I. Suy ra :

\(HK=d\left(H,\left(ACC'A'\right)\right)\)

Ta có :

\(HI=AH.\sin\widehat{IAH}=\frac{\sqrt{3}a}{4}\);

\(\frac{1}{HK^2}=\frac{1}{HI^2}+\frac{1}{HA'^2}=\frac{52}{9a^2}\)

=>\(HK=\frac{3\sqrt{13}a}{26}\)

Do đó \(d\left(B;\left(ACC'A'\right)\right)=2d\left(H;\left(ACC'A'\right)\right)=2HK=\frac{3\sqrt{13}a}{13}\)

30 tháng 3 2016

Khối đa diện