Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi M là trung điểm BC, dựng
∆ AA'G vuông tại G, GH là đường cao => A'G = 1 3
Vậy
Đáp án C
Ta dễ dàng chứng minh được AA'//(BCC'B')
Gọi G là trọng tâm của tam giác ABC. Suy ra A'G ⊥ (ABC)
Ta có
Lại có
Ta luôn có
Gọi M, M' lần lượt là trung điểm của BC và B'C'. Ta có .
Mà MM'//BB' nên BC ⊥ BB' => BCC'B' là hình chữ nhật
Từ:
Đáp án A.
Theo giả thiết ta có CD' ⊥ (ABC). Áp dụng định lý Cô-sin cho ∆ ABD ta được:
AD =
Hình chiếu vuông góc của AC’ trên mặt phẳng (ABC) là AD, vì vậy ta có góc giữa AC' và mặt phẳng (ABC) là góc C ' A D ^ = 45 0 => ∆ C'AD vuông cân tại D
Diện tích ∆ ABC là
Do đó
Đáp án A
Kẻ đường cao AH của tam giác ABC khi đó BC ⊥ A'AH, trong ∆ A'AH kẻ đường cao AK thì
AK ⊥ (A'BC), ta có:
Đáp án B.
Do H là trung điểm AB nên
=> d(B;(ACC'A'))= 2d(H;(ACC'A'))
Ta có A'H ⊥ (ABC) nên
Gọi D là trung điểm của AC thì BD ⊥ AC
Kẻ HE ⊥ AC,
Ta có
Trong (A'HE) kẻ HK ⊥ A'E,
Suy ra = 2HK
Ta có
Xét tam giác vuông A'AH có
Xét tam giác vuông A'HE có
Đáp án B