K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 10 2020

Qua G kẻ đường thẳng song song BC cắt AC tại E

\(\Rightarrow E\in\left(P\right)\)\(\frac{AE}{AC}=\frac{2}{3}\) (theo Talet và t/c trọng tâm)

Trong mặt phẳng (ACC'A'), qua E kẻ đường thẳng song song A'C cắt CC' và AA' lần lượt tại M và N

\(\Rightarrow\frac{CM}{AN}=\frac{EC}{AE}=\frac{1}{2}\Rightarrow CM=\frac{1}{2}AN\) (Talet)

Cũng theo Talet: \(\frac{AN}{AA'}=\frac{AE}{AC}=\frac{2}{3}\Rightarrow AN=\frac{2}{3}AA'=\frac{2}{3}CC'\)

\(\Rightarrow CM=\frac{1}{2}.\frac{2}{3}CC'\Rightarrow\frac{CM}{CC'}=\frac{1}{3}\)

2 tháng 4 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi M và M’ tương ứng là trung điểm của AC và A’C’, ta có:

I ∈ BM, G ∈ C′M, K ∈ B′M′

Theo tính chất trọng tâm của tam giác ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác IG và IK ⊂ (IGK) nên (IGK) // (BB′C′C)

b) Gọi E và F tương ứng là trung điểm của BC và B’C’, O là trung điểm của A’C. A, I, E thẳng hàng nên (AIB’) chính là (AEB’). A’, G, C thẳng hàng nên (A’GK) chính là (A’CF).

Ta có B′E // CF (do B’FCE là hình bình hành ) và AE // A′F nên (AIB′) // (A′GK).

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Ta có: ABB'A' là hình bình hành, M, N là trung điểm của AA', BB' nên MN // AB (đường trung bình) suy ra MN // (ABC).

Tương tự, ta có NP // BC suy ra NP// (ABC).

Mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN, NP và MN, NP song song với mp(ABC) suy ra (MNP//(ABC).

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

15 tháng 11 2023

loading...

loading...

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

12 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) CC′ // BB′ ⇒ ΔICC′ ∼ ΔIBB′

Giải sách bài tập Toán 11 | Giải sbt Toán 11

CC′ // AA′ ⇒ ΔJCC′ ∼ ΔJAA′

Giải sách bài tập Toán 11 | Giải sbt Toán 11

AA′ // BB′ ⇒ ΔKAA′ ∼ ΔKBB′

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi H và H’ lần lượt là trung điểm của các cạnh BC và B’C’. Vì HH’ là đường trung bình của hình thang BB’CC’ nên HH′ // BB′.

Mà BB′ // AA′ suy ra HH′ // AA′

Ta có: G ∈ AH và G′ ∈ A′H′ và ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) AH′ ∩ GG′ = M ⇒ GG′ = G′M + MG

Ta có: G′M // AA′ ⇒ ΔH′G′M ∼ ΔH′A′A

Giải sách bài tập Toán 11 | Giải sbt Toán 11

MG // HH′ ⇒ ΔAMG ∼ ΔAH′H

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác HH’ là đường trung bình của hình thang BB’CC’ nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vì phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó nên có \(M\) nằm giữa \(B\) và \(C\) thì \(M'\) nằm giữa \(B'\) và \(C'\).

Vì phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau nên có \(MB = MC\) thì \(M'B' = M'C'\).

Vậy \(M'\) là trung điểm của \(B'C'\).

Vì phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó nên có \(G\) nằm giữa \(A\) và \(M\) thì \(G'\) nằm giữa \(A'\) và \(M'\).

Vì phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau nên có \(AG = \frac{2}{3}AM\) thì \(A'G' = \frac{2}{3}A'M'\).

Vậy \(G'\) là trọng tâm tam giác \(A'B'C'\).