Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hình chóp A’.ABC có A'A = A'B = A'C và đáy ABC là tam giác đều nên hình chóp A’.ABC đều.
Gọi F là hình chiếu của A’ trên (ABC) nên F là tâm của đáy ABC là tam giác đều do đó F cũng là trọng tâm của tam giác ABC.
Gọi AF cắt BC tại D
Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)
Mà F là trọng tâm nên \(AF = \frac{2}{3}AD = \frac{{a\sqrt 3 }}{3}\)
Xét tam giác A’AF vuông tại F có
\(A'F = \sqrt {A'{A^2} - A{F^2}} = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{3}} \)
Diện tích tam giác đều ABC là \(S = \frac{{{a^2}\sqrt 3 }}{4}\)
Thể tích khối lăng trụ là \(V = A'F.S = \sqrt {{b^2} - \frac{{{a^2}}}{3}} .\frac{{{a^2}\sqrt 3 }}{4}\)
Đáp án là B
Gọi V là thể tích khối lăng trụ ABC.A'B'C'
Mà
Do đó
Suy ra
Vậy V 1 V 2 = 2 7
Đáp án C
Ta có
Suy ra
∆ A'AC vuông tại B nên
Suy ra:
Xét hàm số
Xét hàm số
Ta có
Lập bảng biến thiên, suy ra
Đáp án B.
Vì M,N lần lượt là trung điểm của BB' và CC' nên ta có:
Lại có:
Vậy tỉ số
Đáp án B.
Xét ∆ AA'C có I là trọng tâm,
Ta có: