Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Gọi H, K lần lượt là là trung điểm cạnh A'B' và AB. Từ giả thiết ta có
Mặt khác: HC', HB' và HK đôi một vuông góc nhau.
Tọa độ hóa
Xét mặt phẳng (BC'N) có
Phương trình (BC'N) là:
Khoảng cách từ M đến (BC'N) là:
Đáp án B
Ta có:
S ∆ M N C = S ∆ A B C 4 = a 2 2 (đvdt).
⇒ V A ' M N C = 1 3 A A ' . S ∆ M N C = a 3 2 (đvtt).
Mặt khác: M N / / A B ⇒ M N ⊥ A C
Mà A A ' ⊥ m p ( A B C ) ⇒ M N ⊥ A A '
Do đó S ∆ A ' M N = 1 2 A ' M . M N = 1 2 A A ' 2 + A M 2 = a 10 2 2 (đvdt).
⇒ d ( C ; ( A ' M N ) ) = 3 V A ' M N C S ∆ A ' M N = 3 a 10 (đvđd).
Phương pháp
- Tính chiều cao A 'H .
- Tính thể tích khối lăng trụ V = S A B C . A ' H
Cách giải:
Tam giác ABC vuông cân đỉnh A cạnh AB = AC = 2a nên BC
Tam giác AHA' vuông tại H nên
Vậy thể tích khối lăng trụ
Chọn B.
Đáp án B