K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Ta có \(BB' \bot \left( {ABC} \right);BB' \subset \left( {BCC'B'} \right) \Rightarrow \left( {ABC} \right) \bot \left( {BCC'B'} \right)\)

\(\left( {ABC} \right) \cap \left( {BCC'B'} \right) = BC\)

(ABC): Kẻ \(AH \bot BC\)

\( \Rightarrow AH \bot \left( {BCC'B'} \right) \Rightarrow d\left( {A,\left( {BCC'B'} \right)} \right) = AH\)

Xét tam giác ABC vuông cân tại A có

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{2}{{{a^2}}}\) (hệ thức lượng trong tam giác vuông)

\( \Rightarrow AH = \frac{{a\sqrt 2 }}{2}\)

b) +) Ta có \(AB \bot AC,AB \bot AA'\left( {AA' \bot \left( {ABC} \right)} \right) \Rightarrow AB \bot \left( {ACC'A'} \right);AC' \subset \left( {ACC'A'} \right) \Rightarrow AC' \bot AB\)

Do đó tam giác ABC' là tam giác vuông.

+) Trên (ABC’) kẻ \(AK \bot BC' \Rightarrow d\left( {A,BC'} \right) = AK\)

Xét tam giác ACC’ vuông tại C có

\(A{C'^2} = A{C^2} + C{C'^2} = {a^2} + {h^2}\) (Định lí Pytago)

Xét tam giác ABC’ vuông tại A có

\(\begin{array}{l}\frac{1}{{A{K^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{{C'}^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{a^2} + {h^2}}} = \frac{{2{a^2} + {h^2}}}{{{a^2}\left( {{a^2} + {h^2}} \right)}} \Rightarrow A{K^2} = \frac{{{a^2}\left( {{a^2} + {h^2}} \right)}}{{2{a^2} + {h^2}}}\\ \Rightarrow AK = a.\sqrt {\frac{{{a^2} + {h^2}}}{{2{a^2} + {h^2}}}} \end{array}\)

 

NV
7 tháng 4 2022

Chắc đề đúng là tính \(d\left(A;\left(BCC'B'\right)\right)\)

Gọi E là trung điểm BC \(\Rightarrow AE\perp BC\) (trong tam giác đều trung tuyến đồng thời là đường cao)

\(\Rightarrow AE\perp\left(BCC'B'\right)\)

\(\Rightarrow AE=d\left(A;\left(BCC'B'\right)\right)\)

Ta có: \(AE=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(\Rightarrow d\left(A;\left(BCC'B'\right)\right)=\dfrac{a\sqrt{3}}{2}\)

AH
Akai Haruma
Giáo viên
29 tháng 5 2018

Lời giải:

Cảm thấy đề bài thiếu dữ kiện nên thôi mình sẽ trình bày hướng làm chứ không đi cụ thể vào kết quả.

Gọi độ dài cạnh \(AB=AC=a\). Tam giác $ABC$ vuông cân tại $A$ nên: \(BC=\sqrt{2}a\)

Vì là hình lăng trụ đứng nên:

\(V_{A.A'BC}=\frac{1}{3}.AA'.S_{BAC}=\frac{1}{3}d(A, (A'BC)).S_{A'BC}\)

\(\Leftrightarrow 21.\frac{a^2}{2}=d(A,(A'BC)).S_{A'BC}(*)\)

Pitago: \(A'B=A'C=\sqrt{21^2+a^2}\) (tam giác $A'BC$ cân tại A)

Kẻ đường cao $A'K$ của tam giác $A'BC$

Pitago: \(A'K=\sqrt{A'B^2-BK^2}=\sqrt{21^2+a^2-(\frac{BC}{2})^2}\)

\(=\sqrt{21^2+a^2-(\frac{a\sqrt{2}}{2})^2}=\sqrt{21^2+\frac{a^2}{2}}\)

\(\Rightarrow S_{A'BC}=\frac{A'K.BC}{2}=\frac{\sqrt{21^2+\frac{a^2}{2}}.\sqrt{2}a}{2}=\frac{\sqrt{882a^2+a^4}}{2}(**)\)

Từ \((*);(**)\Rightarrow d(A, (A'BC))=\frac{21a^2}{\sqrt{882a^2+a^4}}=\frac{21a}{\sqrt{882+a^2}}\)

NV
27 tháng 1 2021

\(\widehat{A'BA}=60^0\Rightarrow AA'=AB.tan60^0=a\sqrt{3}\)

(Lại 1 bài mà sử dụng tọa độ hóa sẽ cho kết quả cực kì nhanh chóng).

Lớp 11 thì chắc phải dựng hình:

Trong mp (A'B'C'), qua C' kẻ đường thẳng song song A'B', qua B' kẻ đường thẳng song song A'C', hai đường thẳng này cắt nhau tại D'

\(\Rightarrow AC'||BD'\) (do tứ giác ABD'C' là hình bình hành)

\(\Rightarrow d\left(AC';A'B\right)=d\left(AC';\left(A'BD'\right)\right)=d\left(C';\left(A'BD'\right)\right)\)

Gọi giao điểm của A'D' và B'D' là O \(\Rightarrow OB'=OC'\) theo t/c 2 đường chéo hbh

\(\Rightarrow d\left(C';\left(A'BD'\right)\right)=d\left(B';\left(A'BD'\right)\right)\)

Quy được về 1 bài tính khoảng cách cơ bản: tứ diện B.A'B'D' có \(BB'\perp\left(A'B'D'\right)\) , tìm k/c từ B' đến mp (A'BD')

Lần lượt kẻ B'H vuông góc A'D' và B'K vuông góc BH thì B'K là k/c cần tìm

Bạn tự tính toán nốt nhé

26 tháng 2 2018

d(A;(IBC)=d(A;(A'BC) do I thuộc A'C

từ A hạ AD vuông góc xuống A'B

Do BC vuông gocs với cả (ABB'A') nên BC vuông góc với AD

như vậy AD đã vuông góc với cả (IBC)

d(A;(IBC))=AD=2/căn 5