Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B'N=2BN\Rightarrow BN=\dfrac{1}{3}BB'=2a\)
Qua N lần lượt kẻ các đường thẳng song song AB và BC, chúng cắt AA' tại E và CC' tại F
\(\Rightarrow AE=BN=CF=2a\Rightarrow PF=ME=\dfrac{6a}{2}-2a=a\)
\(NF=NE=AB=BC=a\)
\(\Rightarrow MN=NP=\sqrt{a^2+a^2}=a\sqrt{2}\)
\(\Rightarrow S_{MNP}=\dfrac{a^2\sqrt{7}}{4}\) (công thức Herong, hoặc kẻ NH vuông góc MP và tính NH theo Pitago với tam giác MNP cân tại N)
\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)
Do MA, NB, PC vuông góc (ABC) \(\Rightarrow\) ABC là hình chiếu vuông góc của MNP lên (ABC)
\(\Rightarrow cos\alpha=\dfrac{S_{ABC}}{S_{MNP}}=\sqrt{\dfrac{3}{7}}\Rightarrow\alpha\)
Chọn A
Có tam giác ABC là hình chiếu của tam giác MNP lên mặt phẳng (ABC).
Theo công thức diện tích hình chiếu có
Suy ra
@Nguyễn Việt Lâm anh giúp em câu này với
ko tag đc đâu bạn ơi :v