Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi H là trọng tâm của tam giác ABC, từ giả thiết suy ra B ' H ⊥ A B C .
Khi đó
B B ' , A B C ^ = B B ' , B H ^ = B ' B H ^ = 60 °
Ta có
B B ' = a ⇒ B H = B B ' . cos B ' B H ^ = a . cos 60 ° = a 2 , B ' H = B ' B 2 − B H 2 = a 3 2
Gọi M là trung điểm BC, suy ra B H = 2 3 B M ⇒ B M = 3 2 B H = 3 2 . a 2 = 3 a 4 .
Đặt A C = x > 0 ⇒ B C = A C . tan B A C ^ = x . tan 60 ° = x 3 ⇒ A B = A B 2 + A C 2 = 2 x .
Lại có
B M = B C 2 + C M 2 = B C 2 + A C 2 4 = 3 x 2 + x 2 4 = x 13 2 = 3 a 4 ⇒ x = 3 a 2 13
⇒ A C = 3 a 2 13 , B C = 3 3 a 2 13 , A B = 6 a 2 13 ⇒ S Δ A B C = 1 2 A C . B C = 9 3 a 2 104
(đvdt).
Vậy V A ' A B C = 1 3 B ' H . S Δ A B C = 1 3 . a 3 2 . 9 3 a 2 104 = 9 a 3 208 (đvtt).
Đáp án B
Gọi M, N lần lượt là trung điểm của AC và AM.
Khi đó ΔAHM là tam giác đều và NH ⊥ AC .
Đáp án D
Phương pháp :
+) Kẻ AD ⊥ B’C, xác định góc giữa mặt phẳng (AB’C) và mặt phẳng (BCC’B’)
+) Tính BB’.
+) Tính thể tích khối lăng trụ và suy ra thế tích AB’CA’C’
Cách giải :
Gọi H là trung điểm của BC ta có
Trong (AB’C) kẻ AD ⊥ B’C
Ta có:
=> ((AB'C);(BCC'B')) = (AD;HD) = ADH
Ta có
Dễ thấy ∆CBB’ đồng dạng với ∆CDH (g.g)
Ta có:
Đáp án A