K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1 2022

a. Do \(AC||A'C'\Rightarrow\) giao tuyến của (AB'C) và (A'B'C') là đường thẳng qua B' và song song A'C'

Qua B kẻ \(d||A'C'\Rightarrow d=\left(AB'C\right)\cap\left(A'B'C'\right)\)

b. Trong mp (ABB'A'), gọi M là giao điểm AB' và A'B

Trong mp (BCC'B'), gọi N là giao điểm BC' và B'C

\(\Rightarrow MN=\left(AB'C\right)\cap\left(A'BC'\right)\)

Mặt khác do các mặt bên của lăng trụ là các hình bình hành

\(\Rightarrow\) M là trung điểm AB' và A'B, N là trung điểm BC' và B'C

\(\Rightarrow MN||AC\) (đường trung bình)

\(\Rightarrow\left\{{}\begin{matrix}MN||\left(ABC\right)\\MN||\left(AA'C'C\right)\end{matrix}\right.\)

MN song song (A'B'C) là sai, MN chỉ song song (A'B'C')

20 tháng 3 2018

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

a) Do ABC.A’B’C’ là hình lăng trụ nên ta có: BCC’B’ là hình bình hành

Xét tứ giác BCC’B’ có M và M’ lần lượt là trung điểm của BC và B’C’ nên MM’ là đường trung bình

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

Lại có: AA’// BB’ và AA’= BB’ ( tính chất hình lăng trụ) (2)

Từ (1) và (2) suy ra: MM’// AA’ và MM’ = AA’

=> Tứ giác AMM’A’ là hình bình hành

b) Trong (AMM’A’) gọi O = A’M ∩ AM’, ta có :

Ta có : O ∈ AM’ ⊂ (AB’C’)

⇒ O = A’M ∩ (AB’C’).

c)

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

Gọi K = AB’ ∩ BA’, ta có :

K ∈ AB’ ⊂ (AB’C’)

K ∈ BA’ ⊂ (BA’C’)

⇒ K ∈ (AB’C’) ∩ (BA’C’)

Dễ dàng nhận thấy C’ ∈ (AB’C’) ∩ (BA’C’)

⇒ (AB’C’) ∩ (BA’C’) = KC’.

Vậy d cần tìm là đường thẳng KC’

d) Trong mp(AB’C’), gọi C’K ∩ AM’ = G.

Ta có: G ∈ AM’ ⊂ (AM’M)

G ∈ C’K.

⇒ G = (AM’M) ∩ C’K.

+ K = AB’ ∩ A’B là hai đường chéo của hình bình hành ABB’A’

⇒ K là trung điểm AB’.

ΔAB’C’ có G là giao điểm của 2 trung tuyến AM’ và C’K

⇒ G là trọng tâm ΔAB’C’.

20 tháng 7 2017

Gọi MNE lần lượt là trung điểm của BCCC′B′C′.

 Suy ra (tính chất trọng tâm tam giác) nên IJ // MN  (1).

Trong mặt phẳng (AA′ME) ta có

IK // ME

mà ME // BB′ nên IK // BB′  (2).

Từ (1) và (2) do (IJK) và  (BB′C′) là hai mặt phẳng phân biệt

IJ; IK (IJK)

Nên IJ // (BB′C′), IK // (BB′C′)

Suy ra (IJK) // (BB′C′)

Đáp án cần chọn là: C

3 tháng 7 2017

2 tháng 8 2017

Đáp án B

Xét (A’B’C’) và (A’BC) có:

A’ là điểm chung

B’C’ // BC

 giao tuyến của 2 mặt phẳng là đường thẳng d qua A’ song song với B’C’

⇒ d và B’C’ đồng phẳng

Mà d chứa A’

⇒ d thuộc mặt phẳng (A’B’C’)

Mà H ∈ A’B’H(A’B’C’)

⇒ Mặt phẳng đi qua d và H, cắt tứ diện ABC. A’B’C’ là (A’B’C’)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vì K là trung điểm BC nên B, K, C thẳng hàng theo thứ tự đó và BK = KC. Do vậy B', K', C' thẳng hàng theo thứ tự đó và B'K' = K'C', tức K' là trung điểm B'C'.

Vì G là trọng tâm tam giác ABC nên A, G, K thẳng hàng theo thứ tự đó và AG = 2GK. Do vậy A, G', K' thẳng hàng theo thứ tự đó và A'G' = 2G'K', tức G là trọng tâm tam giác A'B'C'.

10 tháng 10 2018

Giải bài 1 trang 71 sgk Hình học 11 | Để học tốt Toán 11

a) Giả sử (A’B’C’) ∩ d = D’

⇒ (A’B’C’) ∩ (C’CD) = C’D’.

+ AA’ // CC’ ⊂ (C’CD)

⇒ AA’ // (C’CD).

AB // CD ⊂ (CC’D)

⇒ AB // (CC’D)

(AA’B’B) có:

Giải bài 1 trang 71 sgk Hình học 11 | Để học tốt Toán 11 ⇒ (AA’B’B) // (C’CD).

Mà (A’B’C’) ∩ (AA’B’B) = A’B’

⇒ (A’B’C’) cắt (C’CD) và giao tuyến song song với A’B’

⇒ C’D’ // A’B’.

b) Chứng minh tương tự phần a ta có B’C’ // A’D’.

Tứ giác A’B’C’D’ có: B’C’ // A’D’ và C’D’ // A’B’

⇒ A’B’C’D’ là hình bình hành.

22 tháng 9 2023

Tham khảo:

Nếu tam giác A′B′C′ là hình chiếu của tam giác ABC theo phương d thì tam giác ABC là hình chiếu của tam giác A′B′C′ vì tam giác ABC là tập hợp tất cả các hình chiếu của các điểm thuộc A'B'C' qua phép chiếu song song theo phương d.

31 tháng 3 2017

a) Do MM' lần lượt là trung điểm của BC và B'C' nên M'M//BB'//CC'. Vì vậy MM'//AA'.
Vì vậy tứ giác A'M'MA là hình bình hành. Suy ra: AM//A'M'.
b) Trong mp (AA'M'M), ta có: MA' ∩ AM' = K.
     Do \(K\in A'M\)  và \(A'M\in\left(AB'C'\right)\) nên K (AB'C').

c) Có \(O=AB'\cap A'B\) nên \(O\in\left(AB'C'\right)\cap\left(BA'C'\right)\).
 Suy ra: \(d\equiv CO'\).

d) Trong (AB'C'): C'O ∩ AM' = G vì vậy G ( AMM') . Mà O, M' lần lượt là trung điểm AB' và B'C' nên G là trọng tâm của tam giác AB'C'.

 

22 tháng 2 2017