K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có: AD // B’C’, AD = B’C’ nên ADC’B’ là hình bình hành

Suy ra AB’ // DC’ nên AB‘ // (A’C’D) (1)

Ta có: (ACC’A‘) là hình bình hành nên AC // A’C‘

Suy ra AC // (A’C’D‘) (2)

Mà AB‘, AC thuộc (ACB‘) (3)

Từ (1), (2), (3) suy ra  (ACB‘) // (A‘C’D)

b) Gọi O, O’ lần lượt là tâm hình bình hành ABCD, A’B’C’D’

Trong (BDD’B’): B’O cắt BD’

Mà B’O thuộc (ACB’), BD’ cắt (ACB’) tại\({G_1}\)

Suy ra: B’O cắt BD’ tại\({G_1}\)

Tương tự, ta có: DO’ cắt BD’ tại\({G_2}\)

Ta có: tam giác \({G_1}OB\) đồng dạng với tam giác \({G_1}B'D'\) (do BD // B’D’)

Suy ra\(\frac{{{G_1}O}}{{{G_1}B'}} = \frac{{OB}}{{B'D'}} = \frac{1}{2}\)

Nên \(\frac{{{G_1}O}}{{{G_1}B'}} = \frac{2}{3}\)

Do đó:\({G_1}\) là trọng tâm tam giác ACB’

Chứng minh tương tự ta có:\({G_2}\) là trọng tâm tam giác A’C’D

c) Ta có tam giác\({G_1}OB\) đồng dạng với tam giác \({G_1}B'D'\)

Suy ra\(\frac{{{G_1}O}}{{{G_1}B'}} = \frac{{OB}}{{B'D'}} = \frac{1}{2}\)

Nên \({G_1}B = \frac{1}{3}BD'(1)\)

Tương tự ta có:\(\frac{{{G_2}D'}}{{{G_2}B}} = \frac{{OD'}}{{DB}} = \frac{1}{2}\)

Nên \({G_2}D' = \frac{1}{3}{\rm{DD}}'(2)\)

Từ (1) và (2) suy ra\({G_1}B = {G_1}{G_2} = {G_2}D'\)

a: BD cắt AC tại E

b: Xét ΔSAC có SM/SA=SN/SC

nên MN//AC

c: Trong mp(SAC), ta có: SE không song song với MN

=>SE cắt MN tại K

d: \(C\in SN\)

\(C\in\left(ABCD\right)\)

Do đó: \(SN\cap\left(ABCD\right)=C\)

23 tháng 5 2018

9 tháng 8 2018

13 tháng 11 2018

9 tháng 12 2021

9 tháng 12 2021

NV
7 tháng 1 2022

a. Do M, N là trung điểm AD, BC \(\Rightarrow MN||AB||CD\)

Gọi Q là trung điểm SA

\(\Rightarrow PQ\) là đường trung bình tam giác SAB

\(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow Q\in\left(MNP\right)\)

\(\Rightarrow Q=SA\cap\left(MNP\right)\)

b. Do Q là trung điểm SA, M là trung điểm AD

\(\Rightarrow MQ\) là đường trung bình tam giác SAD \(\Rightarrow MQ||SD\)

Mà \(MQ\in\left(MNP\right)\Rightarrow SD||\left(MNP\right)\)

Tương tự ta có \(NP||SC\) (đường trung bình) (1)

\(\left\{{}\begin{matrix}AM=NC=\dfrac{1}{2}AD\\AM||NC\end{matrix}\right.\) \(\Rightarrow AN||CM\) (2)

(1);(2) \(\Rightarrow\left(SMC\right)||\left(ANP\right)\)

c. Đề bài không tồn tại điểm L

NV
7 tháng 1 2022

undefined

18 tháng 12 2016

a) Xét (IJK) và (ACD)

có I thuộc (IJK) giao (ACD)

Trong (BCD) vẽ JK cắt CD tại E

=> E thuộc (IJK) giao (ACD) (đoạn này m ghi tắt :D)

Vậy IE là giao tuyến của (IJK) và (ACD)

Ta có E thuộc IE, IE là con của (IJK)

E thuộc CD

=> E là giao điểm của CD với (IJK)

b) Xét (ABD) và (IJK)

K thuộc (ABD) giao (IJK)

=> Kx là giao tuyến của (ABD) và (IJK)

mà AB // IJ

=> Kx // AB
Trong (ABD) vẽ Kx cắt AD tại F

=> F là giao điểm của AD và (IJK)

Ta có Kx // AB và Kx // IJ (cmt)

mà F thuộc Kx

=> KF // IJ