K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

a) tam giác cân nên dg cao cx là dg trung tuyến

=>BH=3

áp dụng pitago vs tam giác AHB tìm ra dc AH=4

b) vì AH cx là trung tuyến =>G thuộc AH =>A,G,H thẳng hàng

c) xét tam giác ABG và tam giác ACG có

BAH=HAC( dg cao cx là dg trung tuyến

AG chung

AB=AC

=>...

15 tháng 2 2019

Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA, nên  E P Q ^ = E Q P ^ = H Q C ^ = 90 0 − H C Q ^ = 90 0 − P C K ^ .

Do đó  E P Q ^ + P C K ^ = 90 0 , nên  P K ⊥ A C .

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Ta có:}\)

∠BFC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AFC = 90o

∠BEC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AEC = 90o

Tứ giác AEHF có:

∠AFC = 90o

∠AEC = 90o

=>∠AFC + ∠AEC = 180o

=> AEHF là tứ giác nội tiếp

b) ∠AFH = 90o => AH là đường kính đường tròn ngoại tiếp tứ giác AEHF

\(\text{Do đó trung điểm I của AH là tâm đường tròn ngoại tiếp tứ giác AEHF}\)

=> Bán kính đường tròn ngoại tiếp tứ giác AEHF là R = AI = \(\frac{AH}{2}\) = 2cm

Ta có: ∠BAC = 60o

=> ∠FIE = 2∠BAC = 120o (Góc nội tiếp bằng \(\frac{1}{2}\) góc ở tâm cùng chắn một cung)

=> Số đo ∠EHF = 120o

Diện tích hình quạt IEHF là:

\(S=\frac{\pi R^2N}{360}=\frac{\pi.2^2.120}{360}=\frac{4\pi}{3}\left(ĐVDT\right)\)

\(\text{c) Xét tam giác ABC có: }\)

BE và CF là các đường cao

BE giao với CF tại H

=> H là trực tâm tam giác ABC

=>AH ⊥ BC hay ∠ADC = ∠ADB = 90o

Xét tứ giác BEFC có:

∠BFC = ∠BEC = 90o

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc bằng nhau

=> BEFC là tứ giác nội tiếp

=> ∠HFE = ∠BEC ( 2 góc nội tiếp cùng chắn cung EC) (1)

Xét tứ giác BFHD có:

∠BFH = ∠HDB = 90o

=>∠BFH + ∠HDB = 180o

=> Tứ giác BFHD là tứ giác nội tiếp ( tổng 2 góc đối bằng 180o)

=> ∠DFH = ∠BEC ( 2 góc nội tiếp cùng chắn cung HD) (2)

Từ (1) và (2) = > ∠HFE = ∠DFH

=> FH tia phân giác của góc ∠DFE

d) Tam giác OFB cân tại O => ∠OFB = ∠FBO

Tam giác BFC vuông tại F => ∠FBO + ∠HCD = 90o

=> ∠OFB + ∠HCD = 90o (*)

\(\hept{\begin{cases}\Delta FIH\text{CÂN TẠI I}\\\widehat{IHF}=\widehat{DHC}\left(\text{ĐỐI ĐỈNH}\right)\\\Delta HDC\text{VUÔNG TẠI D}\Rightarrow\widehat{DHC}+\widehat{HDC}=90^0\end{cases}}\Rightarrow\widehat{IFH}+\widehat{HDC}=90^0\)

Từ (*) và (**) => ∠OFB = ∠IFH

=> ∠OFB + ∠OFH = ∠IFH + ∠OFH <=> ∠BFC = ∠FIO <=> ∠FIO) = 90o

Vậy FI là tiếp tuyến của (O)

Chứng minh tương tự EI là tiếp tuyến của (O)

Mà I là trung điểm của AH

=> Tiếp tuyến của (O) tại E và F và AH đồng quy tại 1 điểm.

HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP CỦA MIK NHA

VCN JACK trả lời cuc64 kì đ luôn . đ là chất 

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD. a) Tính số đo góc C và chứng minh BD = CD b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E. Chứng minh ΔBME = ΔAMD c) Chứng minh ED = AC Bài 3. Cho ΔABC vuông tại A có AB &lt; AC, AH là đường cao (H ∈BC). Trên cạnh BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC) a) Chứng minh ΔACM cân và ΔCKM =ΔCHA b) Hai đoạn thẳng MK và AH cắt nhau tại...
Đọc tiếp

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB &lt; AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB &lt; AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.

Giúp mik với mik đang cần gấp

0
Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD. a) Tính số đo góc C và chứng minh BD = CD b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E. Chứng minh ΔBME = ΔAMD c) Chứng minh ED = AC Bài 3. Cho ΔABC vuông tại A có AB &lt; AC, AH là đường cao (H ∈BC). Trên cạnh BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC) a) Chứng minh ΔACM cân và ΔCKM =ΔCHA b) Hai đoạn thẳng MK và AH cắt nhau tại...
Đọc tiếp

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB &lt; AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB &lt; AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.

0

a: Xét (O) có

góc BEC, góc BDC đều là các góc nội tiếp chắn nửa đường tròn

=>góc BEC=góc BDC=90 độ

=>CE vuông góc AB, BD vuông góc AC

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc BEH+góc BFH=180 độ

=>BEHF nội tiếp
b: Xét ΔHCB có CO/CB=CM/CH

nên OM//BH

=>góc COM=góc CBH

=>góc COM=góc FEC

=>góc MOF+góc FEM=180 độ

=>OMEF nội tiếp