K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trả lời:

ABCDMEHKIO

a, Gọi O là giao điểm 2 đường chéo của hình chữ nhật ABCD

=> O là trung điểm của BD và AC

Xét tam giác ACE có:

O là trung điểm của AC 

M là trung điểm của AE ( gt )

=> OM là đường trung bình của tam giác ACE

=> OM // CE

hay BD // CE

=> ^BDC = ^ECK ( 2 góc đồng vị )   (1)

Vì O là trung điểm của BD và AC

=> OD = BD/2 và OC = AC/2

Mà BD = AC ( ABCD là hình chữ nhật )

=> OD = OC

=> tam giác DOC cân tại O

=> ^BDC = ^ACD (tc) (2)

Xét tứ giác HEKC có:

^EHC = 90o

^HCK = 90o

^EKC = 90o

=> tứ giác HEKC là hình chữ nhật ( dh1)

Gọi I là giao điểm 2 đường chéo của hình chữ nhật HEKC 

=> I là trung điểm của CE và HK

=> IC = CE/2 và IK = HK/2

Mà CE = HK ( HEKC là hình chữ nhật )

=> IC = IK

=> tam giác ICK cân tại I

=> ^ECK = ^IKC (tc)  (3)

Từ (1) (2) và (3) => ^ACD = ^IKC 

Mà 2 góc này ở vị trí đồng vị 

nên AC // HK ( đpcm )

b, Xét tam giác ACE có:

I là trung điểm của CE 

M là trung điểm của AE (gt)

=> IM là đường trung bình của tam giác ACE

=> IM // AC

Mà HK // AC ( cm ở ý a ) và H, I, K thẳng hàng

nên M, H, K thẳng hàng ( đpcm )

k nha đúng

14 tháng 7 2021

k nha đúng là gì?

30 tháng 5 2018

a)  F H A ^ = H A K ^ = A K F ^ = 90 0

Þ AHFK là hình chữ nhật.

b) Gọi là giao điểm của AC và BD. Chứng minh OE là đường trung bình của DACF

Þ AF//OE

Þ AF/BD

c) Gọi I là giao điểm của AF và HK.

Chứng minh

H 1 ^ = A ^ 1 ( H 1 ^ = A 2 ^ = B 1 ^ = A 1 ^ ) ⇒ K H / / A C  mà KH đi qua trung điểm I của AF Þ KH đi qua trung điểm của FC.

Mà E là trung điểm của FC Þ K, H, E thẳng hàng

7 tháng 6 2021

Trả lời:

A B C D M E H K I O

a, Gọi O là giao điểm 2 đường chéo của hình chữ nhật ABCD

=> O là trung điểm của BD và AC

Xét tam giác ACE có:

O là trung điểm của AC 

M là trung điểm của AE ( gt )

=> OM là đường trung bình của tam giác ACE

=> OM // CE

hay BD // CE

=> ^BDC = ^ECK ( 2 góc đồng vị )   (1)

Vì O là trung điểm của BD và AC

=> OD = BD/2 và OC = AC/2

Mà BD = AC ( ABCD là hình chữ nhật )

=> OD = OC

=> tam giác DOC cân tại O

=> ^BDC = ^ACD (tc) (2)

Xét tứ giác HEKC có:

^EHC = 90o

^HCK = 90o

^EKC = 90o

=> tứ giác HEKC là hình chữ nhật ( dh1)

Gọi I là giao điểm 2 đường chéo của hình chữ nhật HEKC 

=> I là trung điểm của CE và HK

=> IC = CE/2 và IK = HK/2

Mà CE = HK ( HEKC là hình chữ nhật )

=> IC = IK

=> tam giác ICK cân tại I

=> ^ECK = ^IKC (tc)  (3)

Từ (1) (2) và (3) => ^ACD = ^IKC 

Mà 2 góc này ở vị trí đồng vị 

nên AC // HK ( đpcm )

b, Xét tam giác ACE có:

I là trung điểm của CE 

M là trung điểm của AE (gt)

=> IM là đường trung bình của tam giác ACE

=> IM // AC

Mà HK // AC ( cm ở ý a ) và H, I, K thẳng hàng

nên M, H, K thẳng hàng ( đpcm )