Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẽ NI // BC
\(\Rightarrow\frac{DN}{DC}=\frac{AI}{AB}=\frac{AM}{AH}\)
\(\Rightarrow\)MI // BH
\(\Rightarrow\widehat{IMB}=\widehat{MBH}\left(1\right)\)
Tứ giác IBCN có
\(\widehat{IBC}=\widehat{BIN}=\widehat{BCN}\)
\(\Rightarrow\)Tứ giác IBCN là hình chữ nhật
\(\Rightarrow\widehat{NBC}=\widehat{BCI}\left(2\right)\)
Xét tứ giác IMCB có
\(\widehat{IMC}=90\)(vì IM // BH và BH vuông góc AC)\
\(\widehat{IBC}=90\)
\(\Rightarrow\)Tứ giác IMCB là tứ giác nội tiếp đường tròn
\(\Rightarrow\widehat{IMB}=\widehat{ICB}\left(3\right)\)(cùng chắn cung IB)
Từ (1),(2),(3) \(\Rightarrow\widehat{MBH}=\widehat{NBC}\)
\(\Rightarrow\widehat{BMC}=90-\widehat{MBH}=90-\widehat{NBC}=\widehat{CNB}\)
\(\Rightarrow\)Tứ giác MBCN nội tiếp đường tròn
Hay M,B,C,N cùng nằm trên một đường tròn
a) Áp dụng định lí Pytago vào ΔAMC vuông tại A, ta được:
\(MC^2=AC^2+AM^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMC vuông tại A có AD là đường cao ứng với cạnh huyền MC, ta được:
\(\left\{{}\begin{matrix}AD\cdot MC=AM\cdot AC\\AM^2=MD\cdot MC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD\cdot20=16\cdot12=192\\MD\cdot20=12^2=144\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}AD=9.6\left(cm\right)\\MD=7.2\left(cm\right)\end{matrix}\right.\)
Ta có: MD+DC=MC(D nằm giữa M và C)
nên DC=MC-MD=20-7,2=12,8(cm)
hay AB=12,8(cm)
Ta có: AD=BC(ABCD là hình chữ nhật)
nên AD=9,6(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:
\(BH\cdot AC=AB\cdot BC\)
\(\Leftrightarrow BH\cdot16=9.6\cdot12.8=122.88\)
hay BH=7,68(cm)
a) EF là đường trung bình của tam giác ABH => EF//AB; EF=1/2AB (1)
Có G là trung điểm của DC => GC//AB(DC//AB); GC=1/2AB(DC=AB) (2)
Từ (1)$(2) => EF//GC; EF=GC => Tứ giác EFCG là hình bình hành.
b) Xét tam giác EBH và tam giác CBH có:BH là cạnh chung
EHB=CHB=90 (gt)
EH=EC(H là trung điểm của EC)
Vậy tam giác EBH=tam giac CBH (cgv-cgv)
=>BEH=BCH ; EBH=CBH
Lại có:BEH+EBH+BCH+CBH=180 =>BEH=EBH=BCH=CBH=180/4=45 (3)
Co BCE+ECG=BCG
Ma BCG=90(ABCD là hcn); BCE=45(cmt)
=> ECG=45
Xét tam giác EGC có:EGC+GEC+ECG=180
=> EGC=180-(GEC+ECG)
=180-(90+45)=45 (4)
Tu (3)$(4) => BEG=90
c)Tu CM