K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Kẻ DM _I_ AC (M thuộc AC)

\(\sin\alpha=\dfrac{DK}{DO}=\dfrac{DK}{\dfrac{BD}{2}}=\dfrac{2DK}{BD}\)

\(\dfrac{1}{2}\times AC\times BD\times\sin\alpha\)

\(=\dfrac{1}{2}\times AC\times BD\times\dfrac{2DK}{BD}\)

\(=AC\times DK\)

\(=S_{ABCD}\)

\(\left(AC\times DK=2\times\dfrac{1}{2}AC\times DK=2S_{ACD}=S_{ABCD}\right)\)

18 tháng 7 2017

thank you very much

13 tháng 9 2015

Làm như sau :

Kẻ AH vg BD ; CK vg BD 

Sabd = 1/2.AH.BD (1)

Sbcd = 1/2.CK.BD (2)

từ (1) và (2) => Sabcd= Sabd + Sbcd = 1/2BD ( AH+CK) (*)

Tam giác AHO vuông tại H , theo tỉ số lượng giác giữa cạnh và góc

=> AH = OA . sin AOH (3)

Tương tự CK = OC.sin BOC (4)

Mà BOC = AOH => sin BOC = sin AOH  (5)

Từ (3) và (4) và (5) => AH + CK = sin AOH ( OA + OC ) = AC .sin AOH  (**)

Từ (*) và (**) => cái cần phải CM

 

 

1: Xét ΔHAB có 

E là trung điểm của HA

F là trung điểm của HB

Do đó: EF là đường trung bình

=>EF//AB và EF=AB/2

hay EF//CD và EF=CD/2

mà G là trung điểm của CD

nên EF=CG và EF//CG

=>EFCG là hình bình hành

30 tháng 7 2021

\(\left(\sqrt{\dfrac{1+sin\alpha}{1-sin\alpha}}+\sqrt{\dfrac{1-sin\alpha}{1+sin\alpha}}\right).\dfrac{1}{\sqrt{1+tan^2\alpha}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{\left(1-sin\alpha\right)\left(1+sin\alpha\right)}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{\left(1+sin\alpha\right)\left(1-sin\alpha\right)}}\right).\dfrac{1}{\sqrt{1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{1-sin^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{1-sin^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}}}\)

\(=\left(\sqrt{\dfrac{\left(1+sin\alpha\right)^2}{cos^2\alpha}}+\sqrt{\dfrac{\left(1-sin\alpha\right)^2}{cos^2\alpha}}\right).\dfrac{1}{\sqrt{\dfrac{1}{cos^2\alpha}}}\)

\(=\left(\dfrac{1+sin\alpha}{cos\alpha}+\dfrac{1-sin\alpha}{cos\alpha}\right).\dfrac{1}{\dfrac{1}{cos\alpha}}=\dfrac{2}{cos\alpha}.cos\alpha=2\)

25 tháng 7 2023

\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)

a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)

b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)