K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

1)Vì \(\Delta ABC\)vuông tại A (gt) => \(\widehat{BAC=90^0}hay\widehat{HÂ}K=90^0\)

Vì MH vông góc với AB tại H ( gt)

=>\(\widehat{MHA=90^0}\)

Vi MK vuông góc với AC tại K ( gt)

=> \(\widehat{MKA=90^0}\)

Xét tứ giác AMHK có : 

\(\widehat{MKA=90^0\left(cmt\right)}\)

\(\widehat{MHA=}90^0\left(cmt\right)\)

\(\widehat{HAK=90^0\left(cmt\right)}\)

=> AMHK là hình chữ nhật ( dấu hiệu nhận biết)(đpcm)

2)a. Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( \(\Delta\)ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)

b. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=\(\frac{1}{2}AB\)

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=\(\frac{1}{2}AB\)( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=\(\frac{1}{2}AB\)

BH= \(\frac{1}{2}AB\)

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

3)a.Có MK//AB(cmt)

D thuộc MK

=> MD//AB

Có : BC//Ax( gt)

M thuộc BC; D thuộc Ax

=> BM//AD

Xét tứ giác ABMD có : 

AB//MD(cmt)

BM//AD(cmt)

=> ABMD là hình bình hành (dấu hiệu nhận biết)

Xét tam giác ABC vuộng tại A có

M là trung điểm BC( gt)

=> AM là đường trung tuyến ứng với cạnh huyền BC

=> AM=\(\frac{1}{2}BC\)(tính chất )

Có M là trung điểm BC

=> BM=\(\frac{1}{2}BC\)

Mà  AM=\(\frac{1}{2}BC\)

=> BM= AM

Vì ABMD là hình bình hành (cmt)

=> BM= AD(tính chất hình bình hành)

MÀ BM=AM

=> AD=AM(đpcm)

b.Xét tam giác AMD có 

AM=AD(cmt)

=> Tam giác AMD cân tại A 

Có AC vuông góc MK => AK vuông góc MD và AC vuông góc MD

Xét tam giác AMD cân tại A có :

AK vuông góc MD

=> AK là đường cao đồng thời là đường trung tuyến của tam giác AMD
Có AK là đường trung tuyến của tam giác AMD 

=> K là trung điểm MD

Xét tứ giác AMCD có

K là trung điểm AC ( cmt0

K là trung điểm MD(cmt)

=> AMCD là hình bình hành (dấu hiệu nhận biết)

Mà đường chéo AC vuông góc với đương chéo MD

=> AMCD là hình thoi ( dấu hiệu nhận biết)

tưởng gì 

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn) b)Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( 
Δ
ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=1/2AB

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=1/2AB

( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=1/2AB

BH= 1/2AB

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

c)VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

15 tháng 12 2023

loading...  loading...  loading...  loading...  

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

a) từ me vuông góc fc ab vuông góc fc=> me song song ab
=> mn song song ab => mn song song dc (1)
mà ab song song dc (do abcd là hbh)
từ ad ss bc (do .....)
=> md sscn (2) => ma ss bn (5)
từ (1)(2) => mndc là hbh (..) (3)
từ ab =2ad => ab=am=mdmà ab =dc (..) => md=dc (4)_
từ (3)(4) => mndc là hình thoi (...)
b) từ ne ss ab (cmt)
=> ne ss bf
mà nb = nc => fe=ec => e là tđ cf
c) từ abcd là hbh => a = dcb =60
từ mn ss ab và (5) => abnm là hbh (..)
ta có : mcd= 60\ 2 = 30
mà dcf + mcf +mcd
90=30 + mcf
mcf = 60 (6)
trong tam giác mfc có me là đcao đồng thời là đường tt
=> tam giác mfc cân tại M (7)
từ (6)(7) => mfc đều
d)từ fmc đều => fm=fc=> f thuộc trung trực mc
từ mn =nc => n thuộc trung trực mc
từ dm =dc => d thuộc trung trực mc

từ 3 ý trên => f,n,d thẳng hàng
(nếu đúng mình xin 1 tích nha :>> )

Giải thích các bước giải:

Ta có tứ giác ABCD là hbh

=> AD=BC; AD//BC

Mà M và N là trung điểm của AD và BC

=> MD=NC

Xét tứ giác MNCD có ;

MD//NC

MD=NC

=> Tứ giác MNCD là hbh

Mà MD=CD=AD/2

=> Tứ giác MNCD là hình thoi

b) Ta có tứ giác MNCD là hình thoi

=> CD//MN

Xét ΔBFC có: EN//BF

N là trung điểm của BC

=> EN là đườngtrung bình của tam giác BFC

=> E là trung điểm của CF

c) Ta có tứ giác MNCD là hình thoi

=> CM là tia phân giác của gốc BCD

=> Góc BCA=Góc BCD/2=60/2=30

Xét tam giác BFC có NE//BF

                                 NE⊥FC

=> BF⊥FC

=> Góc BCF=90- góc FBC=90-góc BAD=30

=> Góc FCM=Góc FCB+ góc BCM=60

Xét tam giác MCF có ME vừa là đường cao vừa là trung tuyến

=> ΔMCF cân tại M

Mà góc MCF=60

=>ΔMCF đều

d) Ta có : FM=FC( do ΔMCF đều) => F∈ trung trực của MC

DM=DC(=AD/2) =>D∈trung trực của MC

Có NC=NM=> N∈trung trực của MC

=> F;N;D cùng thuộc trung trực của MC

=> F;N;D thẳng hàng

image