K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2022

Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}y-2=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{1}{2};2\right)\)

\(S_{CDE}=\dfrac{1}{2}S_{ABCD}=9\Rightarrow S_{ABCD}=18\)

\(\Rightarrow S_{ADE}=\dfrac{1}{2}AD.AE=\dfrac{1}{8}AD.AB=\dfrac{1}{8}S_{ABCD}=\dfrac{9}{4}\Rightarrow AD.AE=\dfrac{9}{2}\)

Gọi \(A\left(a;2\right)\) và \(D\left(d;2d+3\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EA}=\left(a+\dfrac{1}{2};0\right)\\\overrightarrow{AD}=\left(d-a;2d+1\right)\end{matrix}\right.\)

\(AB\perp AD\Rightarrow\overrightarrow{EA}.\overrightarrow{AD}=0\Rightarrow\left(a+\dfrac{1}{2}\right)\left(d-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-\dfrac{1}{2}\left(loại\right)\\a=d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AE=\left|d+\dfrac{1}{2}\right|\\AD=\left|2d+1\right|\end{matrix}\right.\)

\(AE.AD=\left|\left(d+\dfrac{1}{2}\right)\left(2d+1\right)\right|=\dfrac{9}{2}\)

\(\Leftrightarrow\left(2d+1\right)^2=9\Rightarrow\left[{}\begin{matrix}d=1\left(loại\right)\\d=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(-2;2\right)\\D\left(-2;-1\right)\end{matrix}\right.\)

\(\overrightarrow{AB}=4\overrightarrow{AE}\Rightarrow\)tọa độ B

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ C

8 tháng 5 2016

\(d\left(I;AB\right)=\frac{\left|\frac{1}{2}+2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{\sqrt{5}}{2}\Rightarrow AD=2d\left(I;AB\right)=\sqrt{5}\)và \(AB=2AD=2\sqrt{5}\)

Do đó \(IA=IB=IC=ID=\frac{1}{2}AC=\frac{5}{2}\)

Gọi \(\omega\) là đường tròn tâm I, bán kính \(R=IA\) thế thì  \(\omega\)  có phương trình \(\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\)

Do vậy tọa độ của A, B là nghiệm của hệ :

\(\begin{cases}\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\\x-2y+2=0\end{cases}\)

Giải hệ thu được \(A\left(-2;0\right);B\left(2;2\right)\) (do A có hoành độ âm), từ đó , do I là trung điểm của AC và BD suy ra \(C\left(3;0\right);D\left(-1;-2\right)\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
3 tháng 4 2021

\(EF^2=AF^2+AE^2=\dfrac{9}{16}AD^2+\dfrac{1}{9}AB^2\)

\(CF^2=DF^2+CD^2=\dfrac{1}{16}AD^2+AB^2\)

\(CE^2=BC^2+EB^2=AD^2+\dfrac{4}{9}AB^2\)

Theo Pitago: \(EF^2+CF^2=CE^2\Rightarrow16AB^2=9AD^2\Rightarrow AD=\dfrac{4}{3}AB\)

\(\Rightarrow\left\{{}\begin{matrix}EF^2=\dfrac{10}{9}AB^2\\CF^2=\dfrac{10}{9}AB^2\end{matrix}\right.\) \(\Rightarrow EF=CF\)

Gọi H là hình chiếu vuông góc của F lên CE \(\Rightarrow H\) là trung điểm CE

Phương trình HF: \(3\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow3x+y-7=0\)

 Tọa độ H là nghiệm: \(\left\{{}\begin{matrix}x-3y-9=0\\3x+y-7=0\end{matrix}\right.\) \(\Rightarrow H\left(3;-2\right)\)

Gọi \(C\left(3c+9;c\right)\Rightarrow E\left(-3c-3;-c-4\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EF}=\left(3c+5;c+5\right)\\\overrightarrow{FC}=\left(3c+7;c-1\right)\end{matrix}\right.\)

\(EF\perp CF\Rightarrow\left(3c+5\right)\left(3c+7\right)+\left(c+5\right)\left(c-1\right)=0\)

\(\Leftrightarrow c^2+4c+3=0\Rightarrow\left[{}\begin{matrix}c=-1\Rightarrow C\left(6;-1\right)\\c=-3\Rightarrow C\left(0;-3\right)\left(loại\right)\end{matrix}\right.\)

NV
21 tháng 3 2021

AB đi qua E và vuông góc BC nên nhận (1;-1) là 1 vtpt

Phương trình AB:

\(1\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow x-y+2=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;-1\right)\)

Đường thẳng d qua M và song song AB có pt:

\(1\left(x+1\right)-1\left(y+1\right)=0\Leftrightarrow x-y=0\)

Gọi N là giao điểm d và BC \(\Rightarrow N\) là trung điểm BC

Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x-y=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;2\right)\Rightarrow C\left(7;5\right)\)

Đường thẳng AD qua M và song song BC có pt:

\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)

A là giao điểm AB và AD nên tọa độ là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-2;0\right)\)

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ D

20 tháng 3 2021

Phương trình đường thẳng qua O và song song AB có dạng: x−y=0

 Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0 ⇒M(32;32)

Phương trình đường thẳng BC qua M, nhận (1;1) là 1 vtpt có dạng:

1(x−32)+1(y−32)=0⇔x+y−3=0

Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0 ⇒B

M là trung điểm BC  tọa độ C

O là trung điểm AC  tọa độ A

O là trung điểm BD 

5 tháng 6 2016

C ƠI HÌNH NHƯ BÀI 1 SAI ĐỀ BÀI R