Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi KC cắt đường tròn (O) lần thứ hai tại I, BK cắt AC tại D. Kẻ đường kính IP của đường tròn (O).
Ta thấy ^IKP chắn nửa đường tròn (O) nên KP vuông góc KI. Mà KN vuông góc KI nên K,N,P thẳng hàng
Dễ dàng chứng minh \(\Delta\)IMO = \(\Delta\)PNO (c.g.c) => ^OIM = ^OPN => IM // PN hay IM // KN
Do KN vuông góc CK nên MI cũng vuông góc CK => ^MIC = ^MAC = 900 => Tứ giác ACIM nội tiếp
Suy ra ^AMC = ^AIC = ^ABK => MC // BK. Khi đó, \(\Delta\)ADB có M là trung điểm AB, MC // BD (C thuộc AD)
=> C là trung điểm AD. Nếu ta gọi BC cắt KH tại S thì \(\frac{HS}{AC}=\frac{KS}{CD}\left(=\frac{BS}{BC}\right)\)(Hệ quả ĐL Thales)
Vậy thì S là trung điểm của KH. Nói cách khác, BC chia đôi KH (tại S) (đpcm).
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
=>AEMF là hình chữ nhật
b: Ta có: AEMFlà hình chữ nhật
=>AM cắt EF tại trung điểm của mỗi đường và AM=EF
=>O là trung điểm chung của AM và EF
K đối xứng M qua AC
=>AC vuông góc MK tại trung điểm của MK
ta có: AC\(\perp\)MK
AC\(\perp\)MF
MK,MF có điểm chung là M
Do đó: M,K,F thẳng hàng
=>F là trung điểm của MK
Xét ΔABC có MF//AB
nên \(\dfrac{MF}{AB}=\dfrac{CM}{CB}=\dfrac{1}{2}\)
mà \(\dfrac{MF}{MK}=\dfrac{1}{2}\)(F là trung điểm của MK)
nên \(MK=AB\)
Xét tứ giác ABMK có
AB//MK
AB=MK
Do đó: ABMK là hình bình hành
=>AM cắt BK tại trung điểm của mỗi đường
mà O là trung điểm của AM
nên O là trung điểm của BK
=>B,O,K thẳng hàng
c: Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AMCK có
F là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có AC\(\perp\)MK
nên AMCK là hình thoi
=>AK//CM và CA là phân giác của góc KCM
=>AK//CB
Xét tứ giác ABCK có AK//BC
nên ABCK là hình thang
Để ABCK là hình thang cân thì \(\widehat{KCM}=\widehat{ABC}\)
=>\(\widehat{ABC}=2\cdot\widehat{ACB}\)
mà \(\widehat{ABC}+\widehat{ACB}=90^0\)
nên \(\widehat{ABC}=\dfrac{2}{3}\cdot90^0=60^0;\widehat{ACB}=90^0-60^0=30^0\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên BC=2AM=10(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(AC=10\cdot sin60=5\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)
\(=\dfrac{1}{2}\cdot5\sqrt{3}\cdot10\cdot sin30=5\cdot5\sqrt{3}\cdot\dfrac{1}{2}=\dfrac{25\sqrt{3}}{2}\left(cm^2\right)\)
a.Vì P,H đối xứng qua AM, H, Q đối xứng qua MB
→HI⊥AM,HJ⊥MB→HI⊥AM,HJ⊥MB
Mà AM⊥MB→MIHJAM⊥MB→MIHJ là hình chữ nhật
→→bốn điểm M , I , H , J thuộc một đường tròn.
b.Ta có : HI⊥AM,MH⊥AB,HJ⊥MB→MI.MA=MH2=MJ.MBHI⊥AM,MH⊥AB,HJ⊥MB→MI.MA=MH2=MJ.MB
c.Vì P,HP,H đối xứng qua AM
→ˆPMA=ˆAMH=ˆMBA→PM→PMA^=AMH^=MBA^→PM là tiếp tuyến của (O)
Tương tự MQMQ là tiếp tuyến của (O)
→PQ→PQ là tiếp tuyến của (O)
d.Ta có :
BKKP=BQAP=BHAH=BJJM→KJ//MPBKKP=BQAP=BHAH=BJJM→KJ//MP
Tương tự KI//MQ→I,K,JKI//MQ→I,K,J thẳng hàng
Gọi O là giao điểm của BN và HC, ta có
\(\widehat{BKN}=\widehat{KBH}=\widehat{BHN}=90^0\)
Suy ra tứ giác BHNK là hình chữ nhật mà O là giao điểm 2 đường chéo nên OB=ON
Mà MD=MN
Suy ra OM//BD(1)
Ta có BHNK là hình chữ nhật\(\Rightarrow\widehat{NHK}=\widehat{NBK}=\widehat{NBC}\)
Mà \(\widehat{NBC}=\widehat{BCA}\)( so le trong)
\(\widehat{BCA}=\widehat{DBC}\)
Suy ra \(\widehat{NHK}=\widehat{DBC}\)
Mà NH//BC (cùng vuông góc với AB)
\(\Rightarrow\)HK//BD(2)
Từ (1),(2) suy ra M,H,K thẳng hàng