K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACB vuông tại B có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔACB

7 tháng 3 2023

a.  Xét ΔABH và ΔACB có

∠A chung

∠AHB = ∠ABC = 90

⇒Đpcm

b.  AD định lý PYTAGO cho ΔABC ta tính đc AC=25 cm

vì ΔABH ∼ ΔACB ⇒ BH/BC = AB/AC

thay số vào và giải

c. câu c tự cm theo định lý Talet đảo

 

a: Xét ΔABH vuông tại H và ΔACB  vuông tại B có

góc BAH chung

=>ΔABH đồng dạng với ΔACB

b: \(AC=\sqrt{7^2+24^2}=25\left(cm\right)\)

BH=7*24/25=6,72(cm)

 

a: Xét ΔABH vuông tại H và ΔACB vuông tại B có

góc BAH chung

Do đó: ΔABH đồng dạng với ΔACB

b: ΔABC vuông tại B

=>AC^2=AB^2+BC^2=100

=>AC=10cm

ΔBAC vuông tại B có BH là đường cao

nên AH*AC=AB^2 và BH*AC=BA*BC

=>AH*10=36 và BH*10=6*8=48

=>HA=3,6cm; BH=4,8cm

c: Xét ΔHBC có HE/HB=HK/HC

nên EK//BC

=>góc HEK=góc HBC=góc HAB

Xét ΔHEK vuông tại H và ΔHAB vuông tại H có

góc HEK=góc HAB

Do đó: ΔHEk đồng dạng với ΔHAB

=>HE/HA=EK/AB

=>HE*AB=EK*HA

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm