K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(BD=\sqrt{16^2+12^2}=20\left(cm\right)\)

AH=12*16/20=192/20=9,6cm

MH=9,6-4=5,6cm

DH=12^2/20=144/20=7,2cm

=>HN=7,2-3=4,2cm

=>HN/HD=HM/HA

=>MN//AD

=>MN vuông góc AB

Xét ΔANB có

AH,NM là đường cao

AH cắt NM tại M

=>M là trực tâm

=>BM vuông góc AN

1 tháng 5 2022

undefined

Áp dụng định lý pytago ta có :

`AC^2+AB^2=BC^2`

hay `16^2+12^2=BC^2`

`=>BC^2=400`

`=>BC=20(cm)`

1 tháng 5 2022

Tham khảo : 

undefined

undefined

a) Xét tứ giác EHFA có :

BAC = 90*

HF \(\perp\)AC(gt)

HE\(\perp\)AB (gt)

=> EHFA là hình chữ nhật 

=> AH = EF

b) Vì EHFA là hình chữ nhật (cmt)

=> EH//AF , EH= AF

Mà E là trung điểm PH

=> PE = EH

=> PE = AF

Xét tứ giác PEFA có :

PE = AF

PE// AF ( EH//AF , E\(\in\)PH )

=> PEFA là hình bình hành 

d) Vì PEFA là hình bình hành (cmt)

=> FE//PA (1)

Ta có : HF = FQ (gt)

MÀ HF = EA

=> FQ = EA

Xét \(\Delta HAQ\)có :

AF là trung trực 

=> \(\Delta HAQ\) cân tại A

=> AH = AQ 

Mà AH = EF (cmt)

=> EF = AQ
Xét tứ giác EFQA ta có :

EF = AQ

EA = FQ
=> EFQA là hình bình hành 

=> EF// AQ(2)

(1)(2) => P,A,Q thẳng hàng 

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

b: Xét ΔAEB có 

H là trung điểm của EB

M là trung điểm của AB

Do đó: HM là đường trung bình

=>HM//AE và HM=AE/2

hay HD//AE và HD=AE

hay ADHE là hình bình hành

a: Xét ΔAND và ΔABM có

góc A chung

AN=DM

AB=AD

=>ΔAND=ΔABM

=>AN=AM

góc NAD=góc BAM

=>góc NAD+góc DAM=góc DAM+góc BAM=90 độ

=>góc NAM=90 độ

=>ΔNAM vuông cân tại A

b: Xét ΔABM và ΔPDA có

góc B=góc D

góc BAM=góc APD

=>ΔABM đồng dạng với ΔPDA

=>AB/BM=PD/AD

=>AB*AD=BM*PD=BC^2
c: Xét ΔAIH và ΔAQD có

góc A chung

góc H=góc D

=>ΔAIH đồng dạng với ΔAQD

=>AI*AD=AH*AQ