Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.
2) Ta có tam giác SAB đều nên SA =a3√2
suy ra V=13SABCD.SH=a33√6
Chọn C
Từ giả thiết ta có AB=BC=CD=a
Kẻ AH ⊥ SC
Do AD là đường kính nên AC ⊥ CD và A C = A D 2 - C D 2 = a 3
Do SA ⊥ CD, AC ⊥ CD => CD ⊥ (SAC)=> CD ⊥ AH
=>AH ⊥ SC, AH ⊥ CD => AH ⊥ (SCD)
⇒ d A ( S C D ) = A H = A S . A C A S 2 + A C 2 = a 6 . a 3 3 a = a 2
Kéo dài AB cắt CD tại E. Dễ thấy B là trung điểm của AE.
⇒ d B , S C D d ( A , S C D ) = B E A E = 1 2 ⇒ d B , ( S C D ) = a 2 2
Chọn A
Vẽ OE vuông góc CD, vẽ OH vuông góc với DE
Ta có
Tam giác vuông cân tại O, có
SO = OE = a