Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.
Ta có : \(\widehat{SCH}\) là góc giữa SC và mặt phẳng (ABC).
\(\Rightarrow\widehat{SCH}=60^0\)
Gọi D là trung điểm cạnh AB. Ta có :
\(HD=\frac{a}{6}\), CD= \(\frac{a\sqrt{3}}{2}\)
\(HC=\sqrt{HD^2+CD^2}=\frac{a\sqrt{7}}{3}\)
\(SH=HC.\tan60^0=\frac{a\sqrt{21}}{3}\)
\(V_{s.ABC}=\frac{1}{3}.SH.S_{\Delta ABC}=\frac{1}{3}.\frac{a\sqrt{21}}{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{7}}{12}\)
Kẻ Ax song song với BC, gọi N, K lần lượt là hình chiếu vuông góc của H lên Ax và SN. Ta có BC song song với mặt phẳng (SAN) và \(BA=\frac{3}{2}HA\)
Nên \(d\left(SA.BC\right)=d\left(B,\left(SAN\right)\right)=\frac{3}{2}d\left(H.\left(SAN\right)\right)\)
\(AH=\frac{2a}{3}\); \(HN=AH.\sin60^0=\frac{a\sqrt{3}}{3}\)
\(HK=\frac{SH.HN}{\sqrt{SH^2+HN^2}}=\frac{a\sqrt{42}}{12}\)
Vậy \(d\left(SA.BC\right)=\frac{a\sqrt{42}}{8}\)
Góc 60 là góc SCH. Dễ dàng tính được V
Trong (ABC), kẻ At // BC, Cz//AB, giao At=N
d(sa,bc)=d(bc, (SAN))=d(B, (SAN))=3/2 d(H, (SAN)).
Từ H kẻ HE vuông AN
Trong (SHE) kẻ HF vuông SE
=> d(H(SAN))=HF
TL
Bạn tham khảo
- Gọi \(O\) là tâm tam giác đều \(ABC\) \( \Rightarrow SO \bot \left( {ABC} \right)\).
- Gọi \(N\) là trung điểm \(BC\), chứng minh \(\angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = \angle \left( {SN;AN} \right)\).
- Đặt \(ON = x\), tính \(SO,\,\,SA\) theo \(x\), sử dụng tỉ số lượng giác và định lí Pytago trong tam giác vuông.
- Sử dụng hệ thức: \(SO.AN = NH.SA\), tính \(x\) theo \(a\). Từ đó tính được \(AB\) và tính được \({S_{\Delta ABC}} = \dfrac{{A{B^2}\sqrt 3 }}{4}\).
Hok tốt
Bạn là ai !