K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

Đáp án C

Gọi H là trung điểm của  A D ⇒ S H ⊥ ( A B C D ) ⇒ S H = a 3

Cho hệ trục tọa độ như hình vẽ  ⇒ D ( a ; 0 ; 0 ) , M ( 0 ; 2 a ; 0 ) , N ( a ; a ; 0 )

⇒  Trung điểm MN là I a 2 ; 3 a 2 ; 0  có  S 0 ; 0 ; a 3 , C a ; 2 a ; 0

Gọi d là đường thẳng đi qua I và vuông góc với  (ABCD)

⇒ d có vecto chỉ phương   k   → = 0 ; 0 ; 1

∆ N C M  vuông tại C  là tâm đường tròn ngoại tiếp

⇒  d là trục của đường tròn ngoại tiếp tam giác CMN

⇒  Tâm J của mặt cầu ngoại tiếp SCMN thuộc d

Ta có d qua I a 2 ; 3 a 2 ; 0  và k   → = 0 ; 0 ; 1  là vecto chỉ phương ⇒ d : x = a 2 y = 3 a 2 z = t  

⇒ J a 2 ; 3 a 2 ; t  mà  J C = J S ⇒ a 2 2 + a 2 2 + t 2 = a 2 2 + 3 a 2 2 + a 3 - t 2

⇒ t = 5 a 3 6  Bán kính R = J C = 93 6 a .

12 tháng 11 2018

Phương pháp:

+) Gắn hệ trục tọa độ.

19 tháng 6 2019

Đáp án B

Xét trục tọa độ Oxyz như hình vẽ, với O là trung điểm của AD

Chọn a = 1 =>  => Trung điểm của MN là 

Phương trình đường thẳng qua E, song song với Oz là

Gọi I là tâm mặt cầu cần tìm =>

Suy ra

Mà

Vậy

26 tháng 9 2018

Đáp án C.

Chọn hệ trục tọa độ với H ≡ O 0 ; 0 ; 0   D 1 2 ; 0 ; 0 .  Chọn a = 1.

M 0 ; 1 ; 0 ; N 1 2 ; 1 2 ; 0 ; S 0 ; 0 ; 3 2 ; C 1 2 ; 1 ; 0 là: x = 1 4 y = 3 4 z = t ⇒ tâm mặt cầu có tọa độ K 1 4 ; 3 4 ; t  

Giải:

S K = K C ⇔ 1 16 + 9 16 + t − 3 2 2 = 1 16 + 1 16 + t 2 ⇔ t = 5 3 12 ⇒ R = K C = 93 12 .

13 tháng 11 2019

Đáp án C

5 tháng 8 2019

16 tháng 12 2017

Gọi E là trung điểm của AD ta chỉ ra mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình

chóp S.EABC .

Từ đó ta đưa về bài toán tìm bán kính của mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy.

Sử dụng công thức tính nhanh

với R là bán kính mặt cầu ngoại tiếp hình chóp, r là bán kính

đường tròn ngoại tiếp đáy hình chóp, h là chiều cao hình chóp

Sử dụng công thức tính diện tích mặt cầu

Mà SE vuông góc với AD (do tam giác SAD đều có SE là trung tuyến)

Suy ra SE vuông góc với ( ABCD)=>SE vuông góc với (EABC)

Nhận thấy EABC là hình vuông nên đường tròn ngoại tiếp EABC cũng

là đường tròn ngoại tiếp tam giác ABC

Hay mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình chóp S.EABC.

Mà hình chóp S.EABC có cạnh bên SE vuông góc với (EABC) và đáy EABC là hình vuông cạnh a. Gọi I là tâm hình vuông EABC

Suy ra bán kính mặt cầu ngoại tiếp chóp S.EABC là 

9 tháng 9 2019

Đáp án là B

26 tháng 9 2018

Đáp án C.

Ta có SAD là tam giác đều nên S H ⊥ A D  

Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .  

Dựng  B E ⊥ H C ,

do B E ⊥ S H ⇒ B E ⊥ S H C  

Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a  

Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .  

Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2  

suy ra  V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H

= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .

27 tháng 2 2018

Đáp án đúng : C