K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

Đáp án A.

Trong mặt phẳng (ABCD) gọi: H là trung điểm AD.

Gọi I,J lần lượt là trung điểm của BC và G là trọng tâm  ∆ SAD

 

Đường thẳng d qua O và vuông góc với (ABCD) gọi là trục của đường tròn ngoại tiếp đáy (ABCd).

∆ qua G và vuông góc với (SAD) là trục của đường tròn ngoại tiếp (SAD).

Trong mặt phẳng (SHI), gọi I =  ∆   ∩ d

=> J cách đều các đỉnh của hình chóp

=> J là tâm mặt cầu ngoại tiếp S.ABCD có bán kính

R = JD = 

Có 

21 tháng 2 2019

Đáp án A

ABCD là hình thanh cân có AB = BC = CD = a; AD = 2a nên M là tâm của đáy ABCD.

SA = AD = 2a; SA ⊥ (ABCD) => tam giác SAD vuông cân tại A nên tâm mặt cầu ngoại tiếp hình chóp S.ABCD là trung điểm N của SD

8 tháng 1 2017

24 tháng 6 2017

Hướng dẫn: D

+ Gọi x > 0 là cạnh của hình vuông ABCD và H là trung điểm cạnh AD  

+ Dễ dàng chứng minh

+ Gọi O = AC ∩ BD và G là trọng tâm ∆ A S D , đồng thời d 1 ,   d 2 lần lượt là 2 trục đường tròn ngoại tiếp ABCD, ∆ S A D ( d 1  qua O và // SH, d 2  qua G và //AB)

⇒ I =   d 1 ∩   d 2  là tâm mặt cầu ngoại tiếp khối chóp S. ABCD  ⇒ R = SI

(trong video bài giảng chữa đề, phần này Thầy dùng công thức tính nhanh bán kính mặt cầu ngoại tiếp hình chóp trong trường hợp chóp có mặt bên vuông góc với mặt đáy).

+ Gọi E là điểm thỏa ADEC là hình bình thành

2 tháng 5 2019

Đáp án A

Gọi H là trung điểm của AB, tam giác SAB cân tại S do đó SHAB mà     (SAB)   (ABCD) nên SH   (ABCD). Góc giữa SC và đáy là SCH =600.

Tam giác BHC vuông tại B nên 

Tam giác SHC vuông tại H nên SH = SC.tanSCH

Do vậy 

15 tháng 1 2018

Chọn đáp án D

Gọi O là tâm của hình chữ nhật ABCD và I là trung điểm của SC. Khi đó OI  ⊥ (ABCD)

⇒ IA = IB = IC = ID với ∆ S A C  vuông tại A, IA = IS = IC. Do đó I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD suy ra IA = a 2 ⇒ SC = 2a 2 . Mặt khác AC là hình chiếu của SC trên mặt phẳng (ABCD).

Suy ra ∆ S A C  vuông cân

4 tháng 1 2019

19 tháng 8 2017

22 tháng 3 2018

11 tháng 5 2017

Đáp án C