K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

Vì CD ⊂ (MCD), CD // AB, AB ⊂ (SAB) nên giao tuyến của (MCD) và (SAB) là đường thẳng qua M và song song với AB, cắt SB tại N là trung điểm của SB. Vậy MN // CD. Hơn nữa MN ≠ CD. Vậy thiết diện là hình thang CNMD.

Đáp án C

25 tháng 3 2017

Chọn A

17 tháng 12 2020

undefined

Gọi Q là trung điểm SB

Khi đó PQ||AB||MN

Mà \(P\in mp\left(MNP\right)\)

=> \(Q\in mp\left(MNP\right)\)

Khi đó tứ giác MNPQ là thiết diện cần tìm

27 tháng 8 2017

Đáp án D

Trong (ABCD), kẻ đường thẳng d đi qua F và song song với BD

d cắt AD tại G

d  cắt AC tại K  ⇒ F G ∩ A C = K

Trong (SAD), kẻ đường thẳng x đi qua G và song song với SA

x cắt SD tại H

Trong (SAB), kẻ đường thẳng y đi qua F và song song với SA

y cắt SB tại J

Trong (SAC), kẻ đường thẳng z đi qua K và song song với SA

z cắt AC tại I

FGHIK là thiết diện cần tìm

thiết diện là ngũ giác

9 tháng 6 2018

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm thiết diện :

Trong mp(ABCD), gọi F = AD ∩ PN và E = AB ∩ PN

Trong mp(SAD), gọi Q = MF ∩ SD

Trong mp(SAB), gọi R = ME ∩ SB

Nối PQ, NR ta được các đoạn giao tuyến của mp(MNP) với các mặt bên và mặt đáy của hình chóp là MQ, QP, PN, NR, RM

Vậy thiết diện cắt bởi mặt phẳng (MNP) là ngũ giác MQPNR.

b) Tìm SO ∩ (MNP). Gọi H là giao điểm của AC và PN .

Trong (SAC), SO ∩ MH = I

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Vậy I = SO ∩ (MNP).

20 tháng 12 2021
a. M là điểm chung thứ nhất của (MCB) và (SAD). Ta có: CB // AD. Vậy giao tuyến của (MCB) và (SAD) là đường thẳng d kẻ từ M và song song với AD b. Trong (SAD): d \cap∩ SD = F. Vậy thiết diện cần tìm là hình thang MFCB.
12 tháng 4 2017

Do MN//BD  nên giao tuyến của (MNK) với (SBD) song song với MN. Qua I dựng đường thẳng song song với MN cắt SD,SB lần lượt tại E và F khi đó thiết diện là ngũ giác KEMNF

20 tháng 11 2018

Đáp án D

21 tháng 9 2018

Đáp án B

3 tháng 2 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (P) // BC nên (P) sẽ cắt (SBC) theo giao tuyến B'C' song song với BC.

Tương tự, (P) cắt (SAD) theo giao tuyến MN song song với AD.

Khi M trùng với trung điểm A' của cạnh SA thì thiết diện MB'C'N' là hình bình hành.

b) Với M không trùng với A':

Gọi I ∈ B′M ∩ C′N. Ta có:

I ∈ B′M ⊂ (SAB), tương tự I′ ∈ C′N ⊂ (SCD)

Như vậy I ∈ Δ = (SAB) ∩ (SCD).

26 tháng 6 2018

Nếu H thuộc cạnh OC, O là giao điểm của AC và BD thì thiết diện là ngũ giác KEMNF, trong đó E, F lần lượt là giao điểm của đường thẳng đi qua I, song song với BD với SD, và SB, I là giao điểm của KH với SO

   Nếu H thuộc đoạn OA thì thiết diện là tam giác KMN, với M, N lần lượt là giao điểm của đường thẳng đi qua H, song song BD với AD và AB.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án A