Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Kẻ AH ⊥BD
Khi đó
Mà nên góc giữa (SBD) và (ABCD) là SHA=α.
Suy ra
Do đó
a: (SB;(ABCD))=(BS;BA)=góc SBA
AC=căn a^2+3a^2=2a
SA=căn SC^2-AC^2=a*căn 3
tan SBA=SA/AB=căn 3
=>góc SBA=60 độ
b: (SC;(SAD))=(SC;SD)=góc SCD
SD=căn SA^2+AD^2=2a*căn 3
cos SCD=(CS^2+CD^2-SD^2)/(2*CS*CD)=-2/căn 7
=>góc SCD=139 độ
1.SA \(\perp\)AB , SA\(\perp\)AD =>SAB vuông tại A, SAD vuông tại A
\(\begin{cases}AB\perp BC\left(hvABCD\right)\\SA\perp BC\left(SA\perp mpABCD\right)\end{cases}\) =>(SAB)\(\perp\)BC =>SB\(\perp\)BC =>SBC vuông tại B
\(\begin{cases}AD\perp CD\\SA\perp CD\end{cases}\) =>(SAD)\(\perp\)CD =>SD\(\perp\)CD =>SCD vuông tại D
\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)
\(\Rightarrow\widehat{SBA}=45^0\Rightarrow SA=AB.tan45^0=a\)
Gọi O là tâm đáy \(\Rightarrow AO=CO\Rightarrow d\left(C;\left(SBD\right)\right)=d\left(A;\left(SBD\right)\right)\)
Kẻ AH vuông góc BD, kẻ AK vuông góc SH
\(\Rightarrow AK\perp\left(SBD\right)\Rightarrow AK=d\left(A;\left(SBD\right)\right)\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{1}{a^2}+\dfrac{1}{4a^2}=\dfrac{5}{4a^2}\)
\(\dfrac{1}{AK^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}=\dfrac{1}{a^2}+\dfrac{5}{4a^2}=\dfrac{9}{4a^2}\)
\(\Rightarrow AK=\dfrac{2a}{3}\Rightarrow d\left(C;\left(SBD\right)\right)=\dfrac{2a}{3}\)
a: BD vuông góc AC
BD vuông góc SA
=>BD vuông góc (SAC)
=>(SBD) vuông góc (SAC)
b: (SC;(ABCD))=(CS;CA)=góc SCA
Xét ΔBAC có BA=BC vàgóc BAC=60 độ
nên ΔBAC đều
=>AC=a
=>\(SC=\sqrt{SA^2+AC^2}=\dfrac{\sqrt{10}}{3}\cdot a\)
tan SCA=SA/AC=1/3
=>góc SCA=18 độ