K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

Chọn A

Gọi O là trọng tâm tam giác đều ABD và I là trung điểm BD thì: 

Tam giác ICD vuông I có

=> O và C đối xứng nhau qua đường thẳng BD

Tam giác SAC vuông tại A có SN. SC=SA² 

Tam giác ABC có và AC²=AB²+BC²

=> tam giác ABC vuông tại B

Lại có tam giác SAB vuông nên  M là trung điểm SB

Mặt khác

21 tháng 11 2019

Chọn C

Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.

Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.

Trong tam giác vuông SAB' ta có:

NV
30 tháng 6 2021

Do \(SA=SB=SC=SD\) và đáy là hình vuông nên \(SABCD\) là chóp đều

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Theo tính đối xứng của chóp đều \(\Rightarrow SB'=SD'\Rightarrow B'D'||BD\)

Gọi M là giao điểm SO và AC' \(\Rightarrow M\in B'D'\) (t/c giao tuyến 3 mp cắt nhau)

Áp dụng định lý Talet:

\(\dfrac{SM}{SO}=\dfrac{SD'}{SD}=\dfrac{SB'}{SB}=\dfrac{2}{3}\Rightarrow M\) là trọng tâm tam giác SAC

\(\Rightarrow C'\) là trung điểm SC \(\Rightarrow\dfrac{SC'}{SC}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{V_{SAB'C'D'}}{V_{SABCD}}=\dfrac{2V_{SAB'C'}}{2V_{SABC}}=\dfrac{V_{SAB'C'}}{V_{SABC}}=\dfrac{SA}{SA}.\dfrac{SB'}{SB}.\dfrac{SC'}{SC}=1.\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\)

9 tháng 3 2017

30 tháng 11 2018

15 tháng 10 2019

15 tháng 1 2017

15 tháng 4 2017

Giải bài 8 trang 26 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 8 trang 26 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 8 trang 26 sgk Giải tích 12 | Để học tốt Toán 12Giải bài 8 trang 26 sgk Giải tích 12 | Để học tốt Toán 12Giải bài 8 trang 26 sgk Giải tích 12 | Để học tốt Toán 12 S ∆ A B ' C ' = 1 2 B ' C ' . A B ' = 1 2 . c 2 a 2 + c 2 . b a 2 + b 2 + c 2 . c a a 2 + c 2