K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Đáp án A

Xét ∆ S B C vuông tại B,nên dễ tính được S B = a 3  

Từ đó suy ra  S A = a 2

Gắn trục tọa độ Axyz với A là gốc tọa độ sao cho:

Tia Ax trùng tia AB; tia Ay trùng tia AD; tia Az trùng tia AS.

Khi đó:

 

Phương trình mặt phẳng qua DE và song song với SC là:

Do đó, khoảng cách giữa hai đường thẳng ED và SC là:

d ( E D ; S C ) = d ( S ; ( P ) ) = a 38 19

27 tháng 5 2018

Đáp án A

13 tháng 5 2018

Đáp án C.

Hướng dẫn giải:

Ta có

 

Kẻ H I ⊥ C K , H J ⊥ F I  

 

Ta có H I = 2 a 5 5

⇒ S B = a 3

⇒ H F = a 2 2

Ta có 1 H J 2 = 1 H I 2 + 1 H F 2 = 13 4 a 2

26 tháng 2 2018

Đáp án A

Gắn trục tọa độ Axyz với A là gốc tọa độ sao cho:

Tia Ax trùng tia AB; tia Ay trùng tia AD; tia Az trùng tia AS.

Khi đó:

 

Gọi O là tâm hình vuông ABCD.

Do góc giữa mặt phẳng(SBD)và (ABCD) bằng 60 o nên  S O A ⏞ = 60 o

⇒ S 0 ; 0 ; a 6 2

 Mặt phẳng (P) chứa SC và song song với BM có vecto pháp tuyến là ( 6 ; 2 6 ; 6 ) / / 1 ; 2 ; 6  nên có phương trình:

x + 2 y + 6 z - 3 a = 0

 Do đó: d ( S C , B M ) = d ( B ; ( P ) ) = 2 a 11 (đvđd).

5 tháng 5 2017

Đáp án A

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

5 tháng 9 2017

Đáp án A

Hướng dẫn giải: Ta có:

 

Có A H 2 + S A 2 = 5 a 2 4 = S H 2 ⇒ ∆ S A H  vuông tại A

Do đó mà S A ⊥ ( A B C D )  nên

 

  (Mặt phẳng (SAB) vuông góc với đáy (ABCD)) 

Trong tam giác vuông SAC, có

NV
22 tháng 6 2021

Lớp 12 thì chúng ta tọa độ hóa cho đơn giản

Gọi O là trung điểm AB \(\Rightarrow SO\perp\left(ABCD\right)\)

\(SO=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(AO=BO=\dfrac{a}{2}\)

Đặt hệ trục Oxyz vào chóp, với gốc O trùng O, tia Oz trùng tia OS, tia Ox trùng tia OB, tia Oy trùng tia ON (với N là trung điểm CD). Quy ước \(\dfrac{a}{2}\) là 1 đơn vị độ dài

Ta được tọa độ các điểm: \(S\left(0;0;\sqrt{3}\right)\) ; \(C\left(1;2;0\right)\) ; \(A\left(-1;0;0\right)\) ; \(D\left(-1;2;0\right)\)

Do M là trung điểm SD \(\Rightarrow M\left(-\dfrac{1}{2};1;\dfrac{\sqrt{3}}{2}\right)\)

\(\overrightarrow{AM}=\left(\dfrac{1}{2};1;\dfrac{\sqrt{3}}{2}\right)\) ; \(\overrightarrow{SC}=\left(1;2;-\sqrt{3}\right)\) ; \(\overrightarrow{AC}=\left(2;2;0\right)\)

\(d\left(AM;SC\right)=\dfrac{\left|\left[\overrightarrow{AM};\overrightarrow{SC}\right].\overrightarrow{AC}\right|}{\left|\left[\overrightarrow{AM};\overrightarrow{SC}\right]\right|}=\dfrac{2\sqrt{5}}{5}=\dfrac{a\sqrt{5}}{5}\)