K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
9 tháng 3 2021
Lời giải:
Do $SA\perp (ABCD)$ nên $\angle (SB, ABCD)=\angle (SB, AB)=\widehat{SBA}=45^0$
$\Rightarrow SAB$ là tam giác vuông cân tại $A$
$\Rightarrow SA=AB=a$
Áp dụng định lý Pitago: $SD=\sqrt{SA^2+AD^2}=\sqrt{a^2+(2a)^2}=\sqrt{5}a$
Gọi O là giao điểm AC và BD
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)
\(\Rightarrow BO\perp\left(SAC\right)\) \(\Rightarrow SO\) là hình chiếu vuông góc của SB lên (SAC)
\(\Rightarrow\widehat{BSO}\) là góc giữa SB và (SAC)
\(OB=\dfrac{1}{2}BD=\dfrac{1}{2}.a\sqrt{2}.\sqrt{2}=a\)
\(\Rightarrow sin\widehat{BSO}=\dfrac{OB}{SB}=\dfrac{a}{2a}=\dfrac{1}{2}\)
\(\Rightarrow\widehat{BSO}=30^0\)