Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Dễ thấy rằng:
Giả sử S E ∩ A B = E ' ; S F ∩ C D = F '
Áp dụng định lý Ceva vào tam giác SAB có:
⇔ E ' A = E ' B ⇒ E ' là trung điểm của AB.
Chứng minh tương tự ta cũng có F ' là trung điểm của CD
⇒ E ' F ' là đường trung bình của hình thang ABCD
Áp dụng định lý Menelaus vào tam giác SBE’ với cát tuyến AEM có:
Chứng minh tương tự ta cũng có:
Áp dụng định lý Thales vào tam giác SE’F’ có:
Chọn A.
Gọi K là trung điểm của AB.
DC//AB => DC//(SAB)=> DC//MN
Do đó
Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó
Ta có mặt phẳng (ABCD) có vectơ pháp tuyến là , mặt phẳng (GMN) có vectơ pháp tuyến là
Gọi (α) là góc giữa hai mặt phẳng (GMN) và (ABCD), ta có
Gọi E, F lần lượt là hình chiếu của M và N lên (ABCD). Suy ra E, F lần lượt là trung điểm của HC, HD.
Gọi H, I lần lượt là trung điểm của AB, CD.
Mà d ⊥ (SIH) nên góc giữa góc giữa hai mặt phẳng (GMN) và (ABCD) là