Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi H là trung điểm của CD, dễ thấy SH là đường cao của hình chóp.
Suy ra
Để ý rằng SB 2 = SH 2 + BH 2 = SH 2 + BC 2 + CH 2 = 3 a 2 / 4 + a 2 + a 2 / 4 = 2 a 2 .
Suy ra BS = BD = a 2 , gọi K là trung điểm của SD ta có:
Một đường thẳng muốn vuông góc với một mặt phẳng thì phải vuông góc với 2 đường thẳng chéo nhau chứ bạn? ở ba câu trên bạn mới chứng minh nó vuông với 1 đường mà
Đáp án là B
Gọi H là trung điểm của AB . Tam giác SAB đều nên suy ra SH ⊥AB . Theo giả thiết (SAB) vuông góc với ( ABCD) và có giao tuyến AB nên suy ra SH ⊥ (ABCD) tại H . Có AH ∩ (SBD) = B nên
Trong ( ABCD) kẻ HI ⊥ BD tại I , kết hợp SH ⊥ (ABCD) ta suy ra
BD⊥ (SHI) => (SHI) ⊥ (SBD) , mà (SHI ) ∩ (SBD) = SI nên trong (SHI) nếu ta kẻ HK ⊥ SI tại K thì HK ⊥ (SBD) tại K , do đó HK = d (H,( SBD)) .
Ta tính được :
Tam giác SAB đều cạnh 2a nên SH=a 3
Tam giác SHI vuông tại H đường cao HK nên
Vậy khoảng cách từ A đến (SBD) là: a 3 2
Phương pháp:
Xác định chiều cao hình chóp bằng kiến thức
Xác định khoảng cách
Tính toán bằng cách sử dụng quan hệ diện tích, định lý hàm số cosin, công thức tính diện tích tam giác S = 1 2 a.h với a là cạnh đáy, h là chiều cao tương ứng và
Cách giải:
Gọi H = AM ∪ BD
Ta có
Vì AB//CD nên theo định lý Ta-lét ta có
Ta có
Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2 a 2 nên ta có:
Lại có CD = AB = a 2
Khi đó
Lại có
Từ đó
Chọn: C
Gọi H là trung điểm của AB, suy ra \(SH\perp\left(ACBD\right)\)
Do đó \(SH\perp HD\) ta có :
\(SH=\sqrt{SD^2-DH^2}=\sqrt{SD^2-\left(AH^2+AD^2\right)}=a\)
Suy ra \(V_{s.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{a^2}{3}\)
Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H lên SK. Ta có :
\(\begin{cases}BD\perp HK\\BD\perp SH\end{cases}\) \(\Rightarrow BH\perp\) (SHK)
=> \(BD\perp HE\) mà \(HE\perp SK\) \(\Rightarrow HE\perp\) (SBD)
Ta có : HK=HB.\(\sin\widehat{KBH}\)\(=\frac{a\sqrt{2}}{4}\)
Suy ra \(HE=\frac{HS.HK}{\sqrt{HS^2+HK^2}}=\frac{a}{3}\)
Do đó \(d\left(A:\left(SBD\right)\right)\)=2d(H; (SBD)) =3HE=\(\frac{2a}{3}\)