Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mp(ABCD), gọi \(O=AC\cap BD\)
a) Ta có:
\(\left\{{}\begin{matrix}S\in\left(SAC\right)\\S\in\left(SBD\right)\end{matrix}\right.\)\(\Rightarrow S\in\left(SAC\right)\cap\left(SBD\right)\)
\(\left\{{}\begin{matrix}O\in BD\subset\left(SBD\right)\\O\in AC\subset\left(SAC\right)\end{matrix}\right.\)\(\Rightarrow O\in\left(SAC\right)\cap\left(SBD\right)\)
\(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
Trong mp(SBD), gọi \(I=SO\cap BM\Rightarrow I=BM\cap\left(SAC\right)\)
Ta có: \(\left\{{}\begin{matrix}SM=DM\\OB=OD\end{matrix}\right.\)\(\Rightarrow\dfrac{IB}{IM}=2\)
b) Ta có:
\(\left\{{}\begin{matrix}I\in SO\subset\left(SAC\right)\\I\in BM\subset\left(MBC\right)\end{matrix}\right.\)\(\Rightarrow I\in\left(SAC\right)\cap\left(MBC\right)\)
\(\left\{{}\begin{matrix}C\in\left(SAC\right)\\C\in\left(MBC\right)\end{matrix}\right.\)\(\Rightarrow C\in\left(SAC\right)\cap\left(MBC\right)\)
\(\Rightarrow IC=\left(SAC\right)\cap\left(MBC\right)\)
Trong mp(SAC), gọi \(J=SA\cap IC\)\(\Rightarrow J=SA\cap\left(MBC\right)\)
Theo định lý Menelaus, ta có:
\(\dfrac{JS}{JA}.\dfrac{CA}{CO}.\dfrac{IO}{SO}=1\)\(\Rightarrow\dfrac{JS}{JA}.2.\dfrac{1}{3}=1\Leftrightarrow\dfrac{JS}{JA}=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{OC}{CA}=\dfrac{CI}{CS}\Rightarrow OI\) // \(SA\)
\(OI\subset\left(BID\right)\Rightarrow SA\) // \(\left(BID\right)\)
Nếu thêm phần d là : xác định giao điểm K của BG và (SAC).Tính KB/KG thì làm kiểu gì ạ?
Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).
Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.
Chọn C.
a: Xét ΔSAC có
H,K lần lượt là trung điểm của SA,SC
=>HK là đường trung bình
=>HK//AC
Xét (GHK) và (ABCD) có
HK//AC
\(G\in\left(GHK\right)\cap\left(ABCD\right)\)
Do đó: (GHK) giao (ABCD)=xy, xy đi qua G và xy//HK//AC
b: Chọn mp(SBD) có chứa SD
Gọi O là giao điểm của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔABC có
G là trọng tâm
BO là trung tuyến của ΔABC
Do đó: B,O,G thẳng hàng
=>G\(\in\)BD
Trong mp(SAC), gọi I là giao điểm của SO với HK
\(I\in SO\subset\left(SBD\right);I\in HK\subset\left(GHK\right)\)
=>\(I\in\left(SBD\right)\cap\left(GHK\right)\)(1)
\(G\in BD\subset\left(SBD\right);G\in\left(GHK\right)\)
=>\(G\in\left(SBD\right)\cap\left(GHK\right)\left(2\right)\)
Từ (1) và (2) suy ra \(\left(SBD\right)\cap\left(GHK\right)=GI\)
Gọi M là giao điểm của SD với GI
=>M là giao điểm của SD với (SHK)
c: Xét ΔSAC có
O,K lần lượt là trung điểm của CA,CS
=>OK là đường trung bình của ΔSAC
=>OK//SA và OK=SA/2
OK=SA/2
SH=SA/2
Do đó: OK=SH
Xét tứ giác SHOK có
SH//OK
SH=OK
Do đó: SHOK là hình bình hành
=>HK cắt SO tại trung điểm của mỗi đường
mà E là trung điểm của HK
nên Elà trung điểm của SO
=>E trùng với I
=>(SBD) giao (GHK)=GE
=>G,E,M thẳng hàng