K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

15 tháng 3 2023

a/ Ta có: AB vuông góc với BC, SC vuông góc với BC (vì SC vuông góc với mặt đáy ABCD). Vậy AB // SC. Vậy AB vuông góc (SBC).

b/ Tương tự, ta có: AD vuông góc với CD, SC vuông góc với CD. Vậy AD // SC. Vậy AD vuông góc (SCD).

c/ Ta có: SA vuông góc với mặt đáy ABCD (vì S là đỉnh chóp), CI vuông góc với SB (vì đường thẳng CI là hình chiếu của đường thẳng SC lên mặt phẳng chứa SB và CI). Vậy SA // CI. Vậy SA vuông góc CI.

d/ Gọi M là trung điểm của IJ. Ta cần chứng minh SA vuông góc CM. Ta có: CM vuông góc với IJ (vì nằm trên đường trung trực của IJ). Ta cũng có: SA vuông góc CI (đã chứng minh ở câu c). Vậy ta cần chứng minh CI // JM. Từ đó suy ra (SAC) ⊥ (CIJ). Theo tính chất của hình học không gian, ta có CI vuông góc với mặt phẳng (SBC). Tương tự, JI vuông góc với mặt phẳng (SCD). Vậy CI // JI. Điều này suy ra từ tính chất của mặt phẳng và đoạn thẳng vuông góc với mặt phẳng. Suốt đoạn thẳng IJ, ta có thể lấy một điểm nào đó làm trung điểm, ví dụ M. Vậy CI // JM.

13 tháng 3 2022

undefinedundefinedundefined

22 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O là tâm hình vuông ABCD , dễ thấy I, O, K thẳng hàng. Vì K là trung điểm của BC nên SK ⊥ BC.

Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó (SBC) ⊥ (SIK)

b) Hai đường thẳng AD và SB chéo nhau. Ta có mặt phẳng (SBC) chứa SB và song song với AD. Do đó khoảng cách giữa AD và SB bằng khoảng cách giữa AD và mặt phẳng (SBC).

Theo câu a) ta có (SIK) ⊥ (SBC) theo giao tuyến SK và khoảng cách cần tìm là IM, trong đó M là chân đường vuông góc hạ từ I tới SK. Dựa vào hệ thức IM. SK = SO. IK

ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách giữa hai đường thẳng AD và SB là bằng Giải sách bài tập Toán 11 | Giải sbt Toán 11

a: Sửa đề; BC vuông góc SB

BC vuông góc AB

BC vuông góc SA

=>BC vuôg góc (SAB)

=>CB vuông góc SB

c: (SO;(SCD))=(SO;SK)=góc KSO(OK vuông góc DC tại K)

\(AO=\dfrac{AC}{2}=1.5a\)

\(SA=\sqrt{SC^2-AC^2}=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)

\(SO=\sqrt{SA^2+AO^2}=\dfrac{a\sqrt{73}}{2}\)

\(AD=BC=\sqrt{\left(3a\right)^2-a^2}=2a\sqrt{2}\)

Xét ΔACD có

O là trung điểm của AC

OK//AD

=>K là trung điểm của CD

=>DK=CK=a/2

\(AK=\sqrt{\left(2a\sqrt{2}\right)^2+\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{33}}{2}\)

\(SK=\sqrt{SA^2+AK^2}=\sqrt{\left(4a\right)^2+\dfrac{33}{4}a^2}=\dfrac{a\sqrt{97}}{2}\)

OK=AD/2=a căn 2

\(SO=\dfrac{a\sqrt{73}}{2}\)

\(cosKSO=\dfrac{SK^2+SO^2-OK^2}{2\cdot SK\cdot SO}\simeq0.96\)

=>góc KSO=16 độ

Câu c bn ch c/m đc OK vuông góc vs mp (SCD) 

Thì sao xác định đc góc cần tìm là OSK

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) △SAB có: M, N là trung điểm của SA, SB nên MN // AB 

Mà AB // CD

Suy ra MN // CD mà CD thuộc (SCD)

Do đó: MN // (SCD) 

b) Ta có: MN = \(\dfrac{1}{2}\) AB 

Mà CD = \(\dfrac{1}{2}\) AB 

Suy ra: MN = CD mà MN // CD 

Nên MNCD là hình bình hành. Do đó MD // CN 

Mà CN thuộc (SBC) 

Suy ra: DM // (SBC).

c) Gọi G là giao điểm của DM và AI; H là trung điểm của AB; O là giao điểm của AC và DH

Ta có: AHCD là hình bình hành vì AH // CD, AH = CD

Do đó: O là trung điểm của AC và DH

Ta chứng minh được G là trung điểm của DM

△DMH có: G, O là trung điểm của DM, DH

Suy ra: GO // MH

Mà MH // SB (M, H là trung điểm của SA, AB)

Do đó: GO // SB mà GO thuộc (AIC) nên SB // (AIC).