Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Tam giác ABC vuông cân tại ⇒ A B = B C = 2 a .
Tam giác SHB vuông tại H, có S H = S B 2 − H B 2 = 2 a 2 .
Kẻ H K ⊥ S B K ∈ S B mà B C ⊥ S A B ⇒ H K ⊥ S B C
Suy ra: 1 H K 2 = 1 S H 2 + 1 B H 2 = 1 2 a 2 2 + 1 a 2 = 9 8 a 2
⇒ H K = 2 a 2 3
Vậy khoảng cách từ H → m p S B C là d = 2 a 2 3 .
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Đáp án C
Trong mặt phẳng (ABCD), kẻ DN//CH, dễ thấy AN = AH = HB = SH = a .
Đáp án A