K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Gọi O là tâm hình vuông và H là hình chiếu của O lên SC

Ta có O H D ^ = 60 o ( D H B ^  là góc giữa hai mặt phẳng (SCD) và (SBC) )

Diện tích của ∆ S O C  là

x a 2 2 = O H . S C ⇒ O H = x a 2 2 x 2 + 2 a a O H = a 2 2 . 1 3

Do đó x = a

Đáp án A

15 tháng 7 2018

Đáp án C.

Kẻ C H ⊥ A B .

Bằng tính toán hình thang vuông thông thương ta có được:

20 tháng 6 2017

Đáp án D

19 tháng 1 2017

Đáp án C.

Không mất tính tổng quát, giả sử a = 1

Xét hệ trục tọa độ Oxyz với 

A 0 ; 0 ; 0 ; D 2 ; 0 ; 0 ;

B 0 ; 1 ; 0 ; S 0 ; 0 ; 5 .

Điểm C thỏa mãn 

B C → = 1 2 A D → = 1 ; 0 ; 0

⇒ C 1 ; 1 ; 0 .  

mp(SBC) có 

n 1 → = S B → ; B C → = 0 ; 1 ; − 5 ; 1 ; 0 ; 0

= 0 ; − 5 ; − 1 .

mp(SCD) có 

n 2 → = S D → ; C D → = 2 ; 0 ; − 5 ; 1 ; − 1 ; 0 = 5 ; 5 ; 2 .

Do đó côsin của góc tạo bởi hai mặt phẳng (SBC) và (SCD) bằng:

cos α = n 1 → . n 2 → n 1 . n 2 = 7 2 3 = 21 6 .

7 tháng 11 2019

Đáp án D

Hạ H, K lần lượt là hình chiếu vuông góc của A xuống SB và SD.

Ta có:

A H ⊥ S B A H ⊥ B C ⇒ A H ⊥ S B C . Tương tự  A K ⊥ S D C

Như vậy  S B C , S D C ^ = A H , A K ^ = H A K ^

Ta có Δ S A B = Δ S A D  suy ra A H = A K . Vì góc giữa hai mặt phẳng (SBC) và (SCD) bằng 60 0  nên ΔAHK đều.

Ta có S H S B = S K S D = H K B D , mà S H S B = S A 2 S B 2 = x 2 x 2 + a 2 = K H a 2  suy ra K H = a 2 x 2 x 2 + a 2 .

Ta lại có 1 A H 2 = 1 S A 2 + 1 A B 2 = a 2 + x 2 a 2 x 2  suy ra A H 2 = a 2 x 2 a 2 + x 2 .

ΔAHK đều nên ta có

K H 2 = A H 2 ⇔ a 2 x 2 x 2 + a 2 2 = a 2 x 2 a 2 + x 2 ⇔ x = a .

Vậy x = a  thì góc giữa hai mặt phẳng (SBC) và (SCD) bằng 60 0 .

7 tháng 1 2019

Đáp án C

+ Trong  S A B    dựng   A I ⊥ S B ta chứng minh được  A I ⊥ S B C    1   .

Trong S A D  dựng A J ⊥ S D  ta chứng minh được A J ⊥ S C D 2 .

Từ (1) và (2)  ⇒ S B C , S C D ^ = A I , A J ^ = I A J ^

+ Ta chứng minh được A I = A J . Do đó, nếu góc I A J ^ = 60 °  thì Δ A I J  đều ⇒ A I = A J = I J .

  Δ S A B vuông tại A có AI là đường cao ⇒ A I . S B = S A . A B ⇒ A I = S A . A B S B 3

Và có S A 2 = S I . S B ⇒ S I = S A 2 S B 4

Ta chứng minh được  I J // B D ⇒ I J B D = S I S B ⇒ I J = S I . B D S B = 4 S A 2 . B D 2 S B 2 5   .

Thế (3)&(5) vào A I = I J ⇒ A B = S A . B D S B ⇔ A B . S B = S A . B D .

⇔ a . x 2 + a 2 = x . a 2 ⇔ x 2 + a 2 = 2 x 2 ⇔ x = a

 

4 tháng 11 2019

 

 

21 tháng 1 2018

Đáp án B

8 tháng 2 2018

Đáp án B

5 tháng 8 2018

Đáp án B

Tọa độ hóa và chuẩn hóa với