Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm của hình vuông ABCD.
● Ta có:
● ΔSAO vuông tại A
a: (SBD) giao (ABCD)=BD
AB vuông góc BD
SB vuông góc BD
=>góc cần tìm là góc SBA
a) Ta có:
⇒ (SCD) ⊥ (SAD)
Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).
Vậy (SBC) ⊥ (SAC).
b) Ta có:
c)
Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và .
Tam giác SDI có diện tích:
Đáp án A
Ta có: B là hình chiếu của B lên (ABCD)
A là hình chiếu của S lên (ABCD)
Suy ra góc tạo bởi (ABCD) là góc φ = S B A ^ .
Chọn B
Để cho gọn ta chọn a =1
Chọn hệ trục tọa độ sao cho A = O(0;0;0) và B(1;0;0), D(0;1;0) S(0;0;x) với x = SA >0
Suy ra C(1;1;0)
=> VTPT của mặt phẳng (SCD) là
=> VTPT của mặt phẳng (SBC) là
Từ giả thiết bài toán, ta có
Đáp án C
Gọi H là hình chiếu của C trên SO(O = AC ∩ BD), vì góc SOC tù nên H nằm ngoài SO
=> Góc tạo bởi SC và (SBD) là C S O ^
Ta có
Đáp án B
Kẻ MN // AD // AD nên (MBC) cắt (SAD) theo giao tuyến là MN
Đáp án A.
Gọi H là hình chiếu của C trên SO và góc S O C ^ tù nên H nằm ngoài đoạn SO => CH ⊥ (SBD)
=> Góc tạo bởi SC và (SBD) là C S O ^
Lại có
Đáp án C
Ta thấy AD là hình chiếu vuông góc của SD lên (ABCD)